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Abstract

Field equations of a scale invariant theory of gravitation proposed by Wesson [1, 2] are obtained
in the presence of viscous fluid with the aid of Bianchi type VI space-time with the time dependent,
gauge function (Dirac gauge). It is found that Bianchi type VI (h = 1) space-time with viscous fluid is
feasible in this theory, whereas Bianchi type VI, (h = -1, 0) space-times are not feasible in this theory,
even in the presence of viscosity. For the feasible case, by assuming a relation connecting viscosity and
metric coefficient, we have obtained a nonsingular-radiating model. We have discussed some physical
and kinematical properties of the models.
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1. Introduction

In recent years there has been much interest in alternative theories of gravitation. Among them the scalar
tensor theory of gravitation, the scale invariant and stale covariant theories of gravitation are noteworthy.
Wesson (1, 2] proposed a scale invariant theory of gravitation incorporating the Dirac gauge function 8 (z*),
where z! are coordinates in the four dimensional space time and the tensor field is identified with Riemannian
tensor gy;. Scale invariant theory (1, 2] has been shown to agree with observations involving general relativity
conducted thus far. It is said [3, 4] that Wesson’s formulation of scale invariant theory of gravitation is so
far the best theory to describe all interactions between the matter field and gravitation.

'The field equations for scale invariant theory formulated by Wesson with Dirac gauge function 3 (z*) are

naii" ﬁ.iﬁ,' ru‘B: ﬂ,b fat ﬁ;‘lb
Gy + 254 _4_2»".+ g f—;gz"“_zg biad | gij+ﬁ0ﬁ29ij——NTij, (1)
with
— 1
G,;j = Rtg - ERQ,J (2)

Here, G;; is the usual Einstein tensor, T}; is the energy momentum tensor, K;; is the Ricci tensor and
R is the Ricei scalar. Also, the coma (,) and semicolon (;) notation in the subscripts, respectively, denote
partial and conventional covariant differentiation. The cosmological term Ag;; of Finstein theory is now
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transformed to Agﬁzg,-j in scale invariant theory with the dimensionless constant Ag. G and k are the
Newtonian gravitational constant and Wesson gravitational constant, respectively.

Dirac {3, 4], Hoyle and Naralikar [5], Canuto et al. {6, 7], Mohanty and Daud [8]. Mohanty and Mishra [9,
10] and Mishra [11] are among some authors who have investigated several aspects of scale invariant theory
of gravitation. In particular, Mohanty and Mishra [10] studied the feasibility of Bianchi type-VI}, space-time
in this theory with perfect fluid as a source. They showed Bianchi type VI, (h = 1) space time is the only
possibility ih this theory, and space-time with & = —1 and h = 0 are not feasible. It is well known that
cosmologlca.l models with bulk viscosity in the presence of perfect fluid source are important in the study
of asttophysical problems. It is evident from the literature that the investigations in this direction have not
been taken up. :

In this paper, we have investigated Bianchi typée VI, space-time in scale invariant theory of gravitation
with bulk viscosity in the presence of perfect fluid. It is shown that, even with bulk viscosity the Bianchi
type VI (h = 1), only the cosmological model is feasible. We have obtained the particular solution of a
cosmological model filled with disordered radiation. We have also studied the physical behaviour of the
model. :

2. Metric and Field Equations

We consider the Bianchi type VI, line eleriient with Dirac gauge function 8 = 3 {ct) as Ellis and Mac
Callim [12],

ds? = gds3, (3)
with
dSE = —c*dt? + A%dz” + B?e¥dy? + CPe2hegs?, (4)

where A = A(t), B = B(t), C = C(t), h =constant and dSw and dSg are the intervals in Wesson and
Einstein theories, respectively. )
Heve we consider the enetgy momentum tensor for perfect fluid with bulk viscosity in the formi

T;i(n) = (Pm + pm P Justty + PmGij, (8)
together with
g,;ju‘uj =-1, (6)
and
P = Dm — €8, (7)

where = u,, with w!, is the four velocity vector of the fluid. p,,. pm and £ are energv densitt. proper
1sotrop1c pressire and bulk viscosity of the matter, respectively.
The ron-vanishihg components of conventional Eihstein tensors for the metric (i } are

b BC "0 ke

G [ G B0 i @
2522 [ Cu A

o= S [ B S -] g
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e C'Ze’lh.:l: A44 B44 A4B4 C2
(::m—"CT [—A-—i_?-i- AB —F}

_ TABy  BsCy  AsCy ‘ 2y C
G“__[AB'+BC ac u+h+h)ﬁ
B4 C4
Gua=-(1+ h)—' + — B h?

niek

A4 B4 04
— L — —_— J—
f=u;= [A TBrel

‘I'he: suffix 4 after a field variable denotes differentiation with respect to time £ only.
Field equations (1) for the metric (3) can be expressed as

Az[@(&Jrg) B 2

= i A2 _ 2 _
G = —kpmA s \BTT AR

2 + Agﬁz 2]

2.2z A
Gay = — kP B2e** — BTe™ {_2_'6_4 (_4, + %) ﬁ4 Baa

2 2
e |3 \ate) m- ﬁ+AOﬁ}

C?e?h= 28, (A4 B, férs ﬁ44
— 2,2hx M~ & 4M4 a4 >4 ~4 2 2
Gaz = —K5 Ce 2 [,@(A+B) e ﬁ+Aﬁ },

2ﬁ4 4 B4 4 &_ % 2 9
G44——npmc +[6 (7 §+ )+3,@2 46+A0:@C},

By Gy
G’14-—0=>§4+h —-(1+h) ,z‘.e.A1+"=leo",

where k) is a constant of integration.

(14)

(15)

(16)

(7}

(18)

[u the usual way (see Wesson {1, 2]) equation (1) and equations (14)-(18) suggest the definition of
quantities B, (vacuum pressure with bulk viscosity) and p, (vacuum density) that involves neither the
liinstein tensor of conventional theory nor the properties of conventional matter. These two quantities can

he obtained as

Wi [(h+1\ A (A=1\B)| B fu L
A [( h )A+( h )B}\ 3 25 + Ao c” = kpyc®,

2Wa [(2h+1) A 1B] 5 o4 2
_ﬂ_ |:(_._..’.L_._) ] 'EZ [j +A(lﬁ (:2 - ”’Pvc H

9 2
_ﬁi [ﬁ + E‘i} - 4 — 2@ +.A0,B2C2 = 53151,-021

3|1 A B 72 B
2
"g_ [(thjl) i (hh )%] +3% ﬁ? + Ao ? = —kpyct,

(19)

(20)

(21)

(22)
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where
To = Dy — £6. ' (23)

When there is no matter and gauge function 3 is constant, equations (19)—(21) give the relation

—ctAgr
8 G

whete Agr = Ap?= constant is the cosmological constant in general relativity and x = 87G. Here, p, is
depenident on constant Aggr, G and ¢, hence uniform in all directions. Thus p, is isotropic in nature and
consistent only when

= —Py, Le. py + Py = 0, (24)

2
Py =

A= kB, (25)

where k; is a constant of integration.
Using equation (25) in (19)-(22), the pressure and enetgy density for the vacuum case can be obtained

as
_ 1 20 24, B8 B -
pv :pv - Eo = —';-6—2 [(—Bi) (—14.'—) —_ ﬁ_ﬁ’ - 2% +A0ﬁ2c2] 3 (26)
1 204 {344 B . Ba 2 2
P = md [(5)(A)+3.32— a +A0ﬁc]’ 7

whete 5, and p, relates to the properties of vacuum only in conventional physics. Following Wesson [1, 2],
the total pressure and energy density can be defined as

Pt =DPm + Dy = pt — €0 = (pr, — ) + (P — V) = Py = P + po, — &0 (28)

Pt = Pm T Po. (29)

Using the aforesaid definition of p; and p;, components of Einstein tensor [equations {8)—(13)] and consistency
condition (25), field equations (14)—(18) can be written in the following explicit fori:

2%‘4‘—“ + j_i - h% = —rpec? + BrEc? (%‘1) , (30)
2‘—%‘3 + j—g - hz% = —Kkpc? + 3rEc? (—iﬁ) . (31)
2% + j—g - % = —-np?cz + 3rEc? (—ii) . | (32)
?,j—é Q (1+A+ hz)Z—z = kpyct. (33)
Editations (30)-(32) give
h{h —~ 1)3‘{; =0and (h* = .1)% =0. (34)

jl'!i'es‘e equations hold good simultaheously for A = 1. For h = 1 and & = 0, we get the unphysical
s’i_ftﬂé?idﬁ. i.e. either ¢ = 0 of A is infinitely large. Hence this theory is not feasible for Bianchi type
‘I‘;z“i = —1j and VI (h = 0) metrics, but it is feasible only for Bianchi type VI(h = 1) metric.
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17 Solutions: .

Fiohd oquations CH0) (3 veduees to Ly lieled equations with forr wnknowns py, g A & foe e [ For
s et doterniey, bwo exte conditions are necded, We Lherefore consider Lwo cquations: Lhe equation
al slade

I
"= Epf_cz (35)
el Lhe equation |13
Aq
‘E - gﬂ—z? (36)

whore £y is 0 constant.
Irom: equations (30)—(33), for h = 1, we get

A= %(t+to), (37)

whar (v == 1 — 3¢xc? = constant and t, is constant of integration.
Without loss of generality, we take k1 = k2 = 1 in equations (18) and (25) to get

C
=B=0C=—"(t ] 3
A \/E( + to) (38)
otnl pressure p, and energy density g can be obtained as,
2
peC 1
- — 1 - & y 39
e 3 rc? (t +t0)2 [ ] ( )

tre the reality condition demands a < 1.

Clousidering Dirac gauge function in the form B = 1/¢t, the vacuum pressure and vacuum density can be
Hhtained as

1 4 Ao -5 3&]!1:02
y = e — - , 40
Pv =2 [t(t i) 2+t (40)
1 6 Ap—5
y = —— - , 41
o= A [t(t+ to) t2 J (1)
niiel the matter pressure and density can be obtained as
1 l-a 4 Ag-5
= — - 42
Pm = [(t T Tiirn) T ] (42)
1 [3(1-a) 6 A5
= - } 43
m= ot [ t+rt)? tti+t) £ 43
T'hus the Binnchi type VI model in scale invariant theory is given by
1 c? .
2 _ 2 1,2 2 2 2 2 2
dss = 2 [—c_ dt” + E—(t +to) {dz® + *(dy® + dz )]:| - (44)
Unlng the tenusformation as ¢ = eT, the above metric can be written as
dSfy = —dT? + RX(T)[dz + e**(dy? + d2?)), (45) -
whoere
1
R(T) = —=(1+tge T) (46)

o

63



KHADEKAR, AVACHAR

4. Some Physical Properties

there is a shift {.e. {0, 1, oo) — T{—o00, 0, 20). The new time coordinate being stretched covers the
time region from past to future completely. So one can have a clear picture of the model in the new time

The scalar expansion of the mode| (45) can be obtained as

Ty = U, = 3& = 3t , where Ry = %

R el 2]

Uh the mathematical ground, if ¢, is non zero, the model ceases contraction and the rate of contractions
rethaihs constant at infinite futyre, Thus mode] contracts during evolutjon.

THe shear scalar ¢ =  indicates that the shape of the universe is unchanged during the evolution, Also,
since g; = 0, spacetime ig isotropized during the evolution in scale invariant theory. As the acceleration
is fouhd to be 2ero, particles of matter follow geodesic path in thig theory. The vorticity w of the model
véﬁiéﬁés, which indicates that /¢ is hyper surface orthogonal,

From equation (43), with proper choice of barameters, we get p,, (0) = positive constant and g, — 0 as

— 8o, Thus the universe starts evolving with constant matter density at initial epoch.

Also it has been obsetved that

(47)

%:const. atT:Oand’;%'=0atT=oo, ' (48)

%Hic}; corifirms the homogeneity nature of the space-time during the evolution,
lie shatial volume of mode] (45) is found to be

_ 1 -T\3_ 2
VT, 2) = (1 + toe~T)iee, ‘ (49)
which gives
j 1 . 3

Furt.h'br, we note that V — 7T as T — o and V' — ob as £ — oo, Also, V — o0 as (T, ) — (o0, 00).
Ths the model 1§ spatially opeh and temporary closed and expands uniformly in spatial direction but
corltracts uniformly in time direction till infinite future.
The Hibble barameter H for the mode] (45) is given by

RT —to
R T (51)

iél'Fiib!i detrinines the present rate of expansion of the universe, Also, H(0) =const. and f _, Oasg=(0) =
t'-:%:!'rfh iﬁ'.icatés that the tdte of expansion is accelerated or deceleratec depending on the signature of the

Ao thie deceleration Parameter g for model (45) can be calculated as

_Brrk 1 [e +1to]. (52)

=R

B b <5 that q'0) =rohst.. and at infitiity ¢ is not defined. Thus the model does not Tepresent a steady

S1Et made]
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h. Conclusion

[n this paper we have studied a Bianchi type VI; cosmological model in the scale invariant theory
ol gravitation formulated by Wesson {(1981). The model in this case starts evolving at initial epoch with a
constant volume and ends at an infinite future. Also, the matter density p.,, vanishes for Ag = 3 ( - %foncz)
bt p,, # 0 for t4 = 0. This leads to an unphysical situation. Thus for a viable physical situation one should
have Ag # 3 (1 — L&uke?). Also, the model in this case appears to be steady state.
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