Department of Biotechnology

Antibody

By
Dr. Sapna Baghel

Blood leoma cells Protein Albumin Globulin Blymproyes They react with

Definition

- Antibody is a large protein ,constitutes γ-gloublin produced by plasma cells
- It is used by the immune system to identify and nutralize pathogens such as bacteria and viruses
- Antibodies are also called Immunogloublins
- The antibody recognizes a unique molecule of the harmful agent called ANTIGEN, via the variable region

EPITOPE (ANTIGEN) AND PARATOPE (ANTIBODY)

STRUCTURE

- All antibodies share a basic structure
- Antibodies are heavy globular plasma proteins[or]glycoproteins
- The attached glycans are critically important to the structure and function of the antibody
- Each antibody is heterodiamer with a molecular weight of approximately 150KD

- The immunoglobulin consists of two regions, namely a Variable region (V - Region) and Constant region (C - region).
- In the constant region, the amino acid sequence remains constant in most of the immunoglobulins. In the variable region, the amino acid sequence shows variability.
- The variable region is located at the extremity, in the N –
 Terminal end, constant region in the C Terminal end.
- Based on the function aspect, two regions can be recognized in the immunoglobulin. Fab & Fc.

Sites of Immunogloublin

Structure Ab Variable winge region region (FC) - COOH

14- variable reary The pootein this region 4 (Variable region modify itself by changing diffe aa sequenes minuala modify itself Biological activity with different type variable - Antigen binding site epitope Foratope super variable region - with in the variable region there are some zones chotspi that show relatively higher variability in the amina aid sequence; called as hypervariable regione or complementarity deterning regions cooks

The site on the hyperianidale sera that make actual contact with the epitape of an Ag is called paratype Juinge region - Quite flexible, allowing the To morecule to assume different position, they help the Ab In reaching to words the Ag Hinge region is sensitive to various enzymatic digestions.

Basic structure of Antibody

IMMUNOGLOBULIN DOMAINS

- Antibody is composed of two identical heavy polypeptide chains and two identical light chains, bonded via interchain disulphide[s-s] linkages
- Each chain is composed of structural domains called Immunoglobulin domains
- These domains contains about 70-110 aminoacids

HEAVY CHAINS

- Five types of heavy chains are present
- They are;1)alpha(α) 2)gamma(γ) 3)delta(Δ)
- 4)epsilon 5)mu(μ)
- Each heavy chain has two regions, one constant region and one variable region
- Alpha and gamma chains contains approximately 450 aminoacids, where as mu and epsilon chains have approximately 550 aminoacids

LIGHT CHAINS

- Two types of light chains are present
- They are;1)kappa 2)lambda
- All antibodies have one of the two kinds of light chains
- A light chain has two successive domains, one constant domain and one variable domain
- The approximate length of a light chain is 211-217 aminoacids

DIFFERENT CLASSES OF ANTIBODIES

- There are five classes of antibodies are present
- They are;1)IgG 2)IgM 3)IgA
- 4)lgD 5)lgE
- The antibody classes are named as correspond to their heavy chain types

valency of an Ab refers to the no of fab region it possesses molecule has a yaliny of 2 valency 2 csecutory Valency 10 (but real valency not more thans) Ironuroglobulin classes-

MAD EGg IgA Tam rge IgE most abu found Involved provide onthe in allegic found protect First Ab produced in secret desposse sulface in alexanse to suchas of B cells intection trigger crosse Ptears, & Pelsponse Saliva therelase involvedin breast of historis found in blood get muk B cell activation Lather & lymphotic 2 outperented inflammation provide protection against Respon molecules mucosal infection carge (pertone) Sm Opso can not closs funchion placenta com B happy Aley First cry then complement achyation TOE 38 ANT

Igq most abundant Ab provide long tem protection against vinus crosses placents 2 stal to protect developing monator Responsible ter a response ecules small (monemer) opsonization - making tasty ppy plurys complement activation '0'- opsonyanin-Ab's activity coat the ANT & boderal pathogen to make them more casily recognized by immune Stamp 184 Brouble fee the baby don't coll mediated cytotodicity us ox 100 my Injected

funchion

2)IgM

- They makes up approximately 13% of the serum antibodies
- They has a half-life of about 5 days
- Most of the IgM are pentamer and has 10 epitope binding sites.some are momomer
- It is the first immunoglobulin class produced in a primary response to antigen

functions

- Activation of classical pathway
- Defence against multivalent antigens
- Act as Opsonin

3)IgA

- They makes up approximately 6% of the serum antibodies
- They has a half-life of approximately 5 days
- IgA is a dimer and has 4-epitope binding sites
- They found mainly in body secretions such as saliva, mucous, tears, colostrum and milk

Functions

- It as a Seceratory antibody
- Effective against virus that causing Influnza
- Production to Infant gut

4)IgD

- They makes up approximately 0.2% of the serum antibodies
- IgD is a monomer and has 2-epitope binding sites
- This class antibodies are found on the surface of B-lymphocytes

Function

- B cell activation.
- Act a receptor for antigen binding

5)IgE

- It was discovered by KandT Ishizaka
- It is very low concentration in blood(17-450ng/ml)
- It contain small percentage of Lympocytes

1)IgG

- They makes up approximately 80% of the serum antibodies
- They has a half-life of 7-23 days
- IgG is a monomer and has 2-epitope binding sites
- This is the only class of antibodies that can cross the placenta and enter the fetal circulation

Functions

- Immunity to new born
- Neutralisation of Toxins
- IgG3 binds to Fc receptor by Phagocytosis

The most important function of the Abs are to confer protection against microbial pathogens. Abs confer protection in the following ways:

- They prevent the attachment of microbes to mucosal surface of the host.
- They reduce the virulence of microbes by neutralizing the toxins and viruses.
- They facilitate the phagocytosis by opsonization of microbes,
- They activate complement, leading to complementmediated activities against microbes

110	mon short					1
Immu	oglobulin	classe	<u>8</u> -	no de		-21
Rioperty	Ige	IgA	Igm	D	Ige	1
usual form	monomes 1	n., dimes	monoments extramed 2 or 10	Monomel:	monomer 2	
other chars	None.	J dain,	13	None.	ione	
Subclasses	91,92,9344	component	None	None	None	
Half life (Bleys)	23	6	10001	3	2.5	
Intravalcula	45%	421	80.1.	73.1.	567.	
compleme	4 3	abace		od ott	al al	
elassi co patrio	7 ++	1	+++	-		
Adherran	2	t Orderin	1400		13	

Ige ARI Jam Jes Cexcept lacerta, Ig(2) justes wate Yes Cercopt ragg Winarian I 9 (3) Muosa Hes transport Yes mast cell

Structures of Antibodies

Thank you