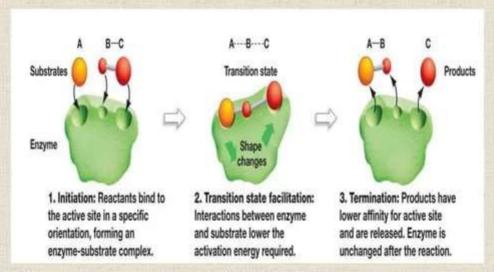

DEPARTMENT OF BIOTECHNOLOGY

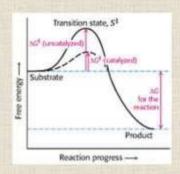
MECHANISM OF ENZYME ACTION

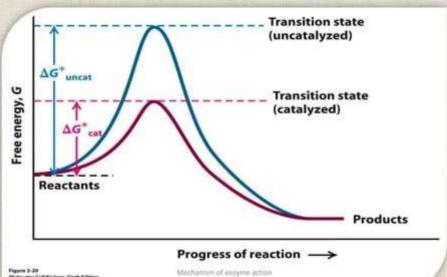


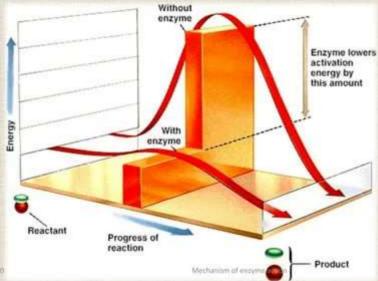
Ms. Payal Talekar

General Mechanism of Action of Enzymes

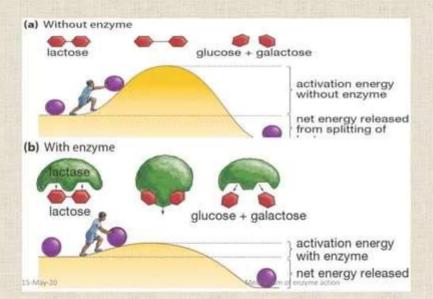
- Enzymes are catalysts and increase the speed of a chemical reaction without themselves undergoing any permanent chemical change.
- They are neither used up in the reaction nor do they appear as reaction products.
- The basic enzymatic reaction can be represented as follows


General Mechanism of Action of Enzymes


Mechanism of enzyme action

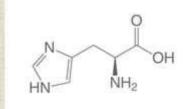

- Enzymes employ multiple mechanisms to facilitate catalysis. The mechanism of action of enzymes can be explained by two perspectives-
- 1) Thermodynamic changes
- 2) Processes at the active site

- A chemical reaction of substrate S to form product P goes through a transition state S‡ that has a higher free energy than does either S or P. (The double dagger denotes a thermodynamic property of the transition state).
- The difference in free energy between the transition state and the substrate is called the Gibbs free energy of activation or simply the activation energy, symbolized by ΔG‡.



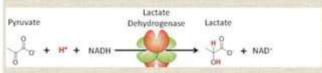
- All enzymes accelerate reaction rates by providing transition states with a lowered G for formation of the transition states. However, they may differ in the way this is achieved.
- The combination of substrate and enzyme creates a new reaction pathway whose transition-state energy is lower than that of the reaction in the absence of enzyme.
- The lower activation energy means that more molecules have the required energy to reach the transition state.

Thermodynamic changes-overview



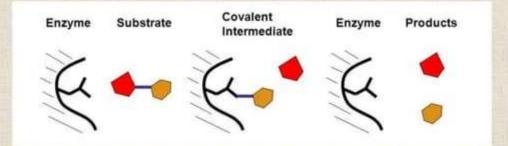
2) Processes at the active site

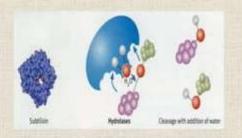
- Enzymes use various combinations of four general mechanisms to achieve dramatic catalytic enhancement of the rates of chemical reactions.
- · These are as follows:
- Acid base catalysis
- Covalent catalysis
- Catalysis by proximity and orientation
- Catalysis by bond strain

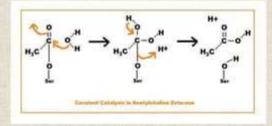

Acid-base catalysis

- Mostly undertaken by oxidoreductases.
 Usually, at the active site, either histidine is present which acts both as a proton donor and proton acceptor.
- At times aspartic acid, glutamic acid and cysteine residues are also present which participate in Hydrogen transfer reactions

Reaction catalyzed by Lactate dehydrogenase

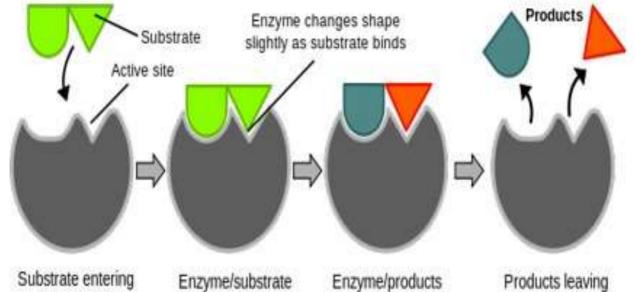



Covalent catalysis


- In catalysis that takes place by covalent mechanisms, the substrate is
 oriented to active sites on the enzymes in such a way that a covalent
 intermediate forms between the enzyme or coenzyme and the substrate.
- Examples of this mechanism- digestive enzymes (trypsin, chymotrypsin, and elastase) and several enzymes of the blood clotting cascade.

Covalent catalysis

- Covalent catalysis introduces a new reaction pathway whose activation energy is lower—and therefore is faster—than the reaction pathway in homogeneous solution.
- The chemical modification of the enzyme is, however, transient.
- On completion of the reaction, the enzyme returns to its original unmodified state.
- · Its role thus remains catalytic.
- Covalent catalysis is particularly common among enzymes that catalyze group transfer reactions.



Catalysis by proximity and orientation

- For molecules to react, they must come within bond-forming distance of one another.
- The higher their concentration, the more frequently they will encounter one -another and the greater will be the rate of their reaction.
- When an enzyme binds substrate molecules at its active site, it creates a region of high local substrate concentration.
- Enzyme-substrate interactions orient reactive groups and bring them into proximity with one another

active site of enzyme

complex

complex

active site of enzyme