NKT/KS/17/5060

Bachelor of Science (B.Sc.) Semester—I (C.B.S.) Examination

ELECTRONICS

(Fundamentals of Digital Electronics)

Compulsory Paper—2

Time: Three Hours]

[Maximum Marks : 50

- **N.B.**:— (1) **ALL** questions are compulsory and carry equal marks.
 - (2) Draw neat and well labelled diagrams wherever necessary.

EITHER

- 1. (A) What is an Excess 3 code? What are the advantages of XS3 code over 8421 code? Express the following numbers in XS3 code:
 - (I) 821
 - (II) 2065

Add the following decimal numbers by first converting them into XS3 code.

- (a) $(42)_{10} + (16)_{10}$
- (b) $(84)_{10} + (56)_{10}$
- (c) $(75)_{10} + (9)_{10}$ 1+1+2+6

OR

(B) Explain the method of converting decimal number to Hexadecimal with suitable example.

Convert the following:

$$(9F2)_{16} = ()_{8}$$

$$(27.16)_{10} = ()_2$$

Explain 1's complement and 2's complement subtraction method with suitable examples.

3+2+5

NXO—12065 1 (Contd.)

EITHER

- 2. For the logic expression $Y = A\overline{B} + \overline{A}B$
 - (a) Obtain the truth table
 - (b) Name the operation performed
 - (c) Realize this operation using AND, OR, NOT gates
 - (d) Realize this operation using NAND gates only

Using De Morgan's theorem, solve the following equation:

$$\overline{(A + B) + (C + D)} = AB + CD$$

$$\overline{(A + B) + (C + D)} = (A + B) (C + D)$$
5+5

OR

Draw the logic symbol, truth table and logic equation for NOR and NAND gate and explain its working.

Explain X-NOR gate with the help of logic diagram equation and truth table. Why X-NOR gate is called an equality gate ? 3+3+3+1

EITHER

- 3. What is K-map? What is minterm and maxterm in K-map? For the logic equation $f = ABC + \overline{BCD} + \overline{ABC}$:
 - (I) Make a truth table
 - (II) Simplify using K-map
 - (III) Draw logic circuit for given equation. How does K map differ from the truth table?

1+2+6+1

OR

Explain SOP and POS terms in K-map with an example. Simplify the function using K-map

$$f(ABCD) = m(0, 1, 3, 5, 6, 9, 11, 12, 13, 15).$$
 4+6

NXO—12065 2 NKT/KS/17/5060

EITHER

4. Explain working of 3-bit parity checker with logic diagram. Draw the logic circuit of 4-bit Adder/Subtractor circuit and explain its working with suitable example. 5+5

OR

What are MUX and DEMUX? Draw 1: 4 demux using logic gates and explain its working with truth table. Draw the logic circuit of full adder with truth table.

2+5+3

- 5. Solve any **ten** of the following:
 - (i) What is radix?
 - (ii) How negative numbers are represented by 2's complement method in binary number system?
 - (iii) What is BCD code?
 - (iv) State AND laws of boolean algebra.
 - (v) Give application of X-OR gate.
 - (vi) State duality theorem.
 - (vii) What is pair and quad of K-map?
 - (viii) What is Don't care condition in NAND gate?
 - (ix) What is rollover in K-map?
 - (x) Draw the circuit of half subtractor with truth table.
 - (xi) Draw the block diagram of 4:1 MUX.
 - (xii) What is decoder? 1×10

3

NXO—12065

NKT/KS/17/5060