

M.Sc. Third Semester (Mathematics) (CBCS) NEP -

MMT3T10 Compulsory Paper-I - M10 - Complex Analysis

P. Pages: 2
Time: Three Hours

SKR/KW/24/10244

Max. Marks: 80

Notes: 1. Solve five questions. Choosing one from each unit and Question no. 9 is compulsory.

UNIT-I

1. a) Find the radius of convergence of the following power series:

i) $\sum \frac{(n!)^2 z^n}{(2n!)}$

ii) $\sum \frac{n!}{n^n} Z^n$

b) Let $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$ have radius of convergence R > 0, then show that

8

8

- i) for each $k \ge 1$ the power series $\sum_{n=k}^{\infty} n(n-1)....(n-k+1)a_n(z-a)^{n-k}$ has radius of convergence.
- ii) The function f is infinitely differentiable, then $f^k(z)$ is given by the power series $\sum_{n=k}^{\infty} n(n-1).....(n-k+1)a_n(z-a)^{n-k}, \text{ for all } k \ge 1 \text{ and } |z-a| < R.$

OR

2. a) Define complex number and explain 'The complex Plane' in detail.

8

8

b) If $\sum a_n(z-a)^n$ is a given power series with radius of convergence R, then show that $R = \lim |\frac{a_n}{a_{n+1}}|$, if this limit exist.

UNIT – II

3. a) If S is a Mobius transformation, then show that S is composition of translation, dialation and the inversion (of course, some of these may be missing).

8

b) Let z_1, z_2, z_3, z_4 be four distinct points in C_{∞} then (z_1, z_2, z_3, z_4) is a real number if and only if all four points lie on a circle.

8

8

4. a) Let $\phi:[a,b]\times[c,d]\to C$ be a continuous function and define $g:[c,d]\to C$ by $g(t)=\int_a^b\phi(s,t)\,ds$, then show that g is continuous. Moreover $\frac{\partial\phi}{\partial t}$ exist and is continuous function on $[a,b]\times[c,d]$, then show that g is continuous differentiable and

 $g'(t) = \int_{a}^{b} \frac{\partial \phi(s,t)}{\partial t} \cdot ds$.

b) If $\gamma:[0,1] \to C$ is a closed rectifying curve and $a \notin \{\gamma\}$, then show that $\frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z-a}$ is an integer.

8

UNIT - III

- 5. a) Let γ be rectifiable curve and suppose ϕ is a function defined and continuous on $\{\gamma\}$, for each $m \ge 1$. Let $F_m(z) = \int_{\gamma} \phi(w) (w-z)^{-m} dw$, for $z \notin \{\gamma\}$, then show that F_m is analytic on $c \{y\}$ and $F'_m(z) = mF_{m+1}(z)$.
 - b) Let G be simply connected and let $f:G\to C$ be an analytic function such that $f(z)\neq 0$, for any $z\in G$, then there exist an analytic function $g:G\to C$ such that $f(z)=\exp(g(z))$ if $z_0\in G$ and $e^{W_0}=f(z_0)$, then show that we may choose g such that $g(z_0)=W_0$.

OR

8

8

8

8

8

8

8

4

4

- 6. a) State and prove Argument Principle.
 - b) If P(z) is a non-constant polynomial then show that there is a complex number with P(z) = 0.

UNIT-IV

- 7. a) State and prove Schwarz's Lemma.
 - b) Define Convex set and also show that a function $f:[a,b] \to R$ is convex, if the set $A = \{(x,y)/a \le x \le b \text{ and } f(x) \le y\}$ is convex.

OR

- 8. a) Show that a differentiable function f on [a, b] is convex if and only if f' is increasing.
 - b) State and prove Hadamards Three Circle theorem.

Compulsory Question

- 9. a) Let $\sum a_n$ and $\sum b_n$ be two absolutely converging series and put $c_n = \sum_{k=0}^n a_k b_{n-k}$, then show that $\sum c_n$ is absolutely convergent with sum $(\sum a_n)(\sum b_n)$.
 - b) If z_2 , z_3 and z_4 are distinct points and T is any Mobius Transformation, then $(z, z_2, z_3, z_4) = (Tz, Tz_2, Tz_3, Tz_4)$, for any point z.
 - c) Let G be a region and suppose that f is non-constant analytic function on G. Then show that for any open set U in G, f (U) is open.
 - d) Let G be region in \mathbb{C} and f be an analytic function on G. Suppose there is a constant M such that $\lim_{z\to a}\sup|f(z)|\leq M$, for all a in $\partial_{\infty}G$, then $|f(z)|\leq M$, for all z in G.

M. Sc. Third Semester (Mathematics) (CBCS) NEP

Compulsory Paper-II MMT3T11 M11: Functional Analysis

P. Pages: 2

Time: Three Hours

SKR/KW/24/10245

Max. Marks: 80

8

8

8

8

8

8

10

6

Note: Solve five questions, choosing one from each unit. Question No. 9 is compulsory.

UNIT-I

a) State and prove Riesz's Lemma.
b) If X is finite dimension norm space, then prove that a subset M of X is compact iff M is closed and bounded.

OF

- 2. a) Define equivalent norms and prove that on a finite dimensional vector space, any two norms are equivalent.
 - b) Every compact subset of a metric space is closed and bounded, but converse is not true.

UNIT-II

- 3. a) Prove that a finite dimension vector space is algebraically reflexive.
 - b) State and prove Schwarz's Inequality.

OR

- 4. a) Prove that R^n is a Hilbert Space.
 - b) Prove that a dual space X' of a norm space is always Banach Space.

UNIT-III

- 5. a) State and prove Riesz's Representation theorem.
 - b) Prove that inner product space $(X, <\cdot >)$ is bounded sequi-linear form.

OR

6. a) Define Hilbert space Let $H_1 \& H_2$ be Hilbert space and let $S: H_1 \to H_2 \& T: H_1 \to H_2$ be a bounded linear operations, then prove the following,

i)
$$\langle T_y^*, x \rangle = \langle y, T_x \rangle$$

- ii) $(S+T)^* = S^* + T^*$
- iii) $(\alpha T)^* = \overline{\alpha} T^*$

- (1) (1)*)* = T
- $\mathbf{v}) \quad \|\mathbf{T}^*, \mathbf{T}\| = \|\mathbf{T}\mathbf{T}^*\| = \|\mathbf{T}\|^2$
- vi) T * T = 0 iff T = 0
- vii) (ST)*=T*S*
- b) Let T:H→H be bounded linear operator on Hilber Space H, then prove the following,
 - i) If T is self adjoint then $\langle T_x, x \rangle$ is real $\forall x \in H$.
 - ii) If H is complex and $\langle T_x, x \rangle$ is real, then T is self adjoint $\forall x \in H$.

UNIT-IV

- 7. a) State and prove open mapping theorem.
 - b) Show that every complete metric space is not meager.

OR

- 8. a) State and prove closed graph theorem.
 - b) State and prove uniform Bohdedness Theorem.

Compulsory Question

- 9. a) Show that on a finite dimension norm space, every linear operator is bounded.
 - b) Prove that C[a, b] is not an inner product space, by showing that its norm does not satisfy parallelogram law.
 - c) Define:
 - Isometric operator
 - ii) Normal operator
 - iii) Self adjoint operator
 - iv) Unitary operator
 - d) Define weak Cauchy sequence in a normed space and prove that it is bounded.

2

SKR/KW/24/10245

-

Cottler.

8

6

10

8

4

4

4

M. Sc. Third Semester (Mathematics) (CBCS) NEP

Compulsory Paper-III: MMT3T12 M12: Advanced Mathematical Methods

P. Pages: 3	
Time: Three Hours	

SKR/KW/24/10246

Max. Marks: 80

Notes: 1. Solve five questions choosing one from each unit.

2. Question No. 9 is compulsory.

UNIT-I

1. a) Find the Fourier series of the function defined as, $f(x) = \begin{cases} x + \pi & \text{for } 0 < x < \pi \\ -x - \pi & \text{for } -\pi < x < 0 \end{cases} \text{ and } f(x + 2\pi) = f(x).$

b) Obtain the Fourier cosine series expansion of the periodic function defined by $f(t) = \sin\left(\frac{\pi t}{t}\right), \ 0 < t < t$

OR

2. a) If $f(x) = \begin{cases} \pi x & , & 0 < x < 1 \\ \pi(2-x), & 1 < x < 2 \end{cases}$ using half range cosine series, show that: $\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \dots = \frac{\pi^2}{96}$

b) Find the Fourier series expansion of the periodic function of period 2π defined by, $f(x) = \begin{cases} x & \text{if } -\pi/2 < x < \pi/2 \\ \pi - x, & \text{if } \pi/2 < x < 3\pi/2 \end{cases}$

UNIT-II

3. a) Let f(t) and g(t) be two continuous functions of positive variables and $L[f(t)] = \overline{f}(p)$ and $L[g(t)] = \overline{g}(p)$ then, $L[(f*g)(t);p] = \overline{f}(p) \cdot \overline{g}(p)$.

b) Find the Laplace transform of: Sin at

i) $t^2 \cdot \cos at$ ii) $\frac{\sin a}{t}$

OR

4. a) Using Laplace transforms, solve the differential equations. $(D+1)y_1 + (D-1)y_2 = e^{-t},$ $(D+2)y_1 + (D+1)y_2 = e^{t}$

Where, $D = \frac{d}{dt}$ and $y_1(0) = 1, y_2(0) = 0$.

Solve; $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 5y = e^{-x} \cdot \sin x$. Where y(0) = 0, y'(0) = 1.

UNIT - III

OR

State and prove Fourier Integral Theorem and express it in exponential form. 5.

8

8

Solve the Laplace equation $\Delta_2 u = 0$, $0 \le y \le a$ with boundary condition u(x,0) = f(x) and $u_y(x,a) = 0$

Using Parseval's identity, prove that

$$\int_{0}^{\infty} \frac{dt}{(a^{2}+t^{2})(b^{2}+t^{2})} = \frac{\pi}{2ab(a+b)}$$

8

Find the solution in $D = \{(x,y): 0 \le x \le a, 0 \le y \le b\}$. If the diffusion equation, $K\Delta_2 u(x,y,t) = \frac{\partial u}{\partial t}$, t > 0 where, u vanishes on boundary of D and $u(x,y,o) = f(x,y), (x,y) \in D.$

8

UNIT-IV

7. Define Z-transform. Find the Z-transform of $sin(\alpha k)$, $k \ge 0$. 8

8

b) If $\{f(k)\} = F(Z)$, $\{g(k)\} = G(Z)$, a and b are constants, then prove that; $Z^{-1}\lceil aF(Z) + bG(Z) \rceil = a Z^{-1}\lceil F(Z) \rceil + b Z^{-1}\lceil G(Z) \rceil$ And hence find the inverse Z-transform of $\frac{1}{7-2}$.

a) Obtain: $Z^{-1} \left[\frac{2Z^2 - 10Z + 13}{(Z-3)^2(Z-2)} \right]$, when 2 < |Z| < 3. By Partial fraction method. 8

Solve the difference equation: $6y_{k+2} - y_{k+1} - y_k = 0$, y(0) = 0, y(1) = 1by Z-transform.

8

Compulsory Question.

æ

a) Expand $f(x) = e^x$ in a cosine series over (0, 1).

4

b) Obtain: $L^{-1} \left[\frac{1}{s(s^2 + a^2)} \right]$

4

- c) If F(s) is the complex Fourier transform of f(x), then $F\{f(ax)\}=\frac{1}{a}F(\frac{s}{a})$
- d) Prove that: $\lim_{K \to \infty} f(k) = \lim_{Z \to 1} (Z 1) \cdot F(Z)$

M. Sc. Third Semester (Mathematics) (CBCS) NEP

Elective(A) Optional Paper-IV: MMT3T13 M13: General Theory of Relativity

~	ges ; 2 ; Three	A STATE OF THE PARTY OF THE PAR	KW/24/10247 Max. Marks : 80
Auto dota aggo g	Note:	 Solve all five questions. Choosing One from each of the four units. Question No. 9 is compulsory. 	
		UNIT-I	
		Define Outer product and Inner Products.	8
1.	n)	Let A^r be an arbitrary contravariant vector if the inner product $A^r B_r$ is invariant	nt then
		B_r is covariant vector.	
			8
	b)	State and prove Bianchi Identity.	
		OR	
2.	a)	Show that Einstein tensor has zero divergence.	8
	b)	Using variational principle derive differential equation of geodesic in Riemannia	an space. 8
		UNIT – II	
3.	u)	Obtain the differential equation of Geodesic for the metric, $ds^{2} = f(x)dx^{2} + dy^{2} + dz^{2} + \frac{1}{f(x)}dt^{2}$	8
	b)	Discuss in detail the principle of equivalence and principle of covariance.	8
		OR	
4.	a)	Explain in detail Mach Principle.	8
	b)	Prove that the filed equations of general relativity can be recovered from the Poi equation of Newtonian theory of gravitation.	sson's 8
		UNIT – III	
5.	a)	Discuss in brief the Bending of light rays.	8
	b)	State and Prove Birkhoff's theorem.	8
		OR	

8

8

6.

a)

b)

Obtain the differential equation of planetary orbit.

Discuss Schwarzschild's exterior solution in a isotropic form.

UNIT - IV

7.	a)	Fin	d the interior solution when pressure is same everywhere in spherically symmetric	8
	b)	bod	by i.e. $p = p_0 = constant$. It it the expression of pressure in the Newtonian limit.	8
			OR	
8.	a)	Exp	plain the expression of Tolman – Oppenheimer – Volkoff equation.	8
	b)	Der	rive the expression of Schwarzschild's Interior Solution.	8
9.		Compulsory question.		
		a)	Derive the relation between absolute derivative and covariant derivative of a contravariant vector field.	4
		b)	Find the non-vanishing Christoffel symbols of the given metric, $ds^{2} = -e^{2Rt} \left(dx^{2} + dy^{2} + dz^{2} \right) + dt^{2}$	4
		c)	Discuss the Schwarzschild Singularity.	4
		d)	Find the interior solution for spherically symmetric body when pressure p and density ρ are related as $p = -\rho$.	4
