
Classroom

In this section of Resonance, we invite readers to pose questions likely to be raised in a
classroom situation. We may suggest strategies for dealing with them, or invite responses,
or both. “Classroom” is equally a forum for raising broader issues and sharing personal
experiences and viewpoints on matters related to teaching and learning science.
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Exploring Kepler Problem Using Maple∗

The Kepler problem is named after Johannes Kepler, who
proposed Kepler’s laws of planetary motion. Kepler problem
is a special case of the two-body problem in classical mechan-
ics. The two bodies interact by a central force F that varies in
strength as the inverse square of the distance r between them.
Here, we are looking for the equation of motion using the
Lagrangian formulation and its solution using a numerical
approach. Though the general theory of relativity provides
more accurate solutions to the two-body problem, especially
in strong gravitational fields, here we are exploring numeri-
cal methods followed by correction term in potential energy,
inversely proportional to the cube of the radius for perihelion
motion.

1. Introduction

The Keywords

Kepler problem, perihelion

motion, Maple.

Kepler problem refers to a classical problem in celestial me-
chanics that involves understanding the motion of two bodies in
space under the influence of their mutual gravitational attraction.
Specifically, it deals with studying the orbits of planets or other
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celestial objects around a central body, such as the motion of a
planet around the Sun.

TheKepler’s First Law (Law
of Ellipses): Each planet

orbits the Sun in an
ellipse, with the Sun at

one of the two foci of the
ellipse.

problem is named after the German astronomer Johannes
Kepler, who formulated three fundamental laws of planetary mo-
tion in the early 17th century. These laws describe how planets
orbit the Sun in elliptical paths, with the Sun at one focus of the
ellipse. The laws are:

Kepler’s First Law (Law of Ellipses): Each planet orbits
the Sun in an ellipse, with the Sun at one of the two foci of
the ellipse.

Kepler’s Second Law (Law of Equal Areas): AKepler’s Second Law
(Law of Equal Areas): A

line segment joining a
planet and the Sun

sweeps out equal areas
during equal intervals of
time. This means that a

planet moves faster
when it is closer to the

Sun and slower when it
is farther from the Sun.

line seg-
ment joining a planet and the Sun sweeps out equal areas
during equal intervals of time. This means that a planet
moves faster when it is closer to the Sun and slower when
it is farther from the Sun.

Kepler’s Third Law (Law of Harmonies): The square of
the orbital period of a planet (the time it takes to complete
one orbit) is proportional to the cube of the semi-major axis
of its orbit. This can be expressed as T 2 ∝ a3; here, T is the
orbital period, and a a is the semi-major axis of the ellipse.

The KeplerKepler’s Third Law
(Law of Harmonies):

The square of the orbital
period of a planet (the

time it takes to complete
one orbit) is proportional

to the cube of the
semi-major axis of its

orbit. This can be
expressed as T 2 ∝ a3;

here, T is the orbital
period, and a a is the

semi-major axis of the
ellipse.

problem can be solved using the equations derived
from these laws, and it has significant implications for our
understanding of planetary motion and gravitational forces.

In a broader context, the Kepler problem is often used to refer
to the general problem of determining the motion of two bodies
under the influence of their mutual gravitational attraction. This
problem is a specific case of the more general two-body problem
in celestial mechanics, which involves solving for the orbits of
two bodies orbiting their common center of mass.

The most important central-force problem is one involving a force
proportional to the inverse square of the distance—the Kepler
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problem. Newton’s law of gravitation is

F = G
mM
r2 r̂.

If the potential energy V only depends on the mutual separation r
of the two bodies, we describe such a force as a central force (be-
cause the force is always along r). It is convenient to handle cen-
tral force problems in polar coordinates. One can prove that the
two bodies remain in the same plane. Let the plane be θ = π/2;
the kinetic energy and potential energy in polar coordinates is

T =
1
2

m(ṙ2 + r2ϕ̇
2), V(r) = −

GMm
r
. (1)

The Lagrangian is then

L = T − V(r). (2)

This Lagrangian has no explicit dependence on ϕ. Because of
the symmetry property, the corresponding conjugate momentum,
namely angular momentum, is a conserved quantity of the system:

pϕ =
∂L
∂ϕ̇
≡ l = constant.

If a Lagrangian has no explicit dependence on time, the energy of
the system is conserved:

∂L
∂t
= 0⇒ T + V = constant.

Conserved quantities in mechanics, such as angular momentum
and energy, are direct consequences of symmetries of the
Lagrangian.

2. Kepler Problem

The Lagrangian [1] in central-force problem is

L =
1
2

m(ṙ2 + r2ϕ̇
2) −

GMm
r
. (3)

The angular momentum l bears relation in ϕ forϕ̇ = dϕ/dt = ω as:

mr2ϕ̇ = l. (4)
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2.1 Formulation of Lagrange’s Equation

The Euler–Lagrange equations [2], or Lagrange’s equations of the
second kind

d
dt

(
∂L
∂q̇ j

)
−
∂L
∂q j
. (5)

Substituting following two equations in the Lagrange’s
formulation (5):

∂L
∂ṙ
= mṙ ⇒

d
dt

(
∂L
∂ṙ

)
= mr̈

∂L
∂r
= mrϕ̇2

−
GMm

r2 .

Thus, we get Lagrangian for Kepler:

mr̈ − mrϕ̇2 +
GMm

r2 = 0. (6)

2.2 Solving Lagrange’s Equation

We have two differential equations—(4) (first-ordered) and (6)
(second-ordered)—which we intend to solve numerically by ex-
ploring initial conditions, that is we need r0, ṙ0, ϕ0, ϕ̇0 arbitrarily
(in fact meaningfully) as initial condition. It is generally con-
venient to set zero time at the moment that ṙ = 0 and to define
ϕ0 = 0.

To make the equations of motion easier to analyse, we decouple
these two equations to obtain equations of r and ϕ separately:

ϕ̇ =
l

mr2 . (7)

Substituting (7) into (6) and simplifying, we get

mr̈ −
l

mr3 +
GMm

r2 = 0. (8)

In our approach to the Kepler problem [3], we made no use of the
fact that energy is conserved; we simply obtained equations of
motion from the Lagrangian and directly solved those differential
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equations (numerically). Energy Energy conservation is a
consequence of a
symmetry property of
the Lagrangian—its time
independence.

conservation is a consequence of
a symmetry property of the Lagrangian—its time independence.
We exploit symmetry to simplify calculations so that a second-
order differential equation is reduced to a first-order one. If we
treat a mechanical problem as a problem of the calculus of varia-
tions, no knowledge about the energy is necessary; to find particle
motion, we only need initial conditions.

Energy and angular momentum are, nevertheless, related to ini-
tial conditions. Because both energy and angular momentum are
conserved, their values calculated from time zero remain invari-
ant:

E =
1
2

m(ṙ2
0 + r2

0ϕ̇
2
0) + V(r0), l = mr2

0ϕ̇
2
0. (9)

Though Kepler problem admits an analytic solution, here, we en-
visage a numerical approach to solve the same using the property
of conservation of energy and angular momentum:

E = T + V = constant, l = constant. (10)

E =
1
2

m(ṙ2 + r2ϕ̇
2) −

GMm
r
, l = mr2ϕ̇

2
. (11)

Both the conservation equations (11) are first-ordered differential
equation and can be combined to eliminate ϕ̇ to write a single
first-ordered differential equation as:

E =
1
2

mṙ2 +
l2

2mr2 −
GMm

r
.

Above relation can be further rearranged, simplified for ṙ = dr/dt
in order to solve first ordered differential equation in variable
separation mode as following:

dt =
dr√

2
m

(
E + GMm

r

)
− l2

m2r2

. (12)

Similarly, the second in equation (11) can be further rearranged,
simplified forϕ̇ = dϕ/dt to solve first ordered differential equation
in variable separation mode as following:

dt =
mr2

l
dϕ. (13)
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Table 1. Trajectory depen-
dence on eccentricity ϵ. In
5th entry for perihelion mo-
tion, ϕ̇ = 1.3, ϕ = r = ṙ = 0
for G = M = m = 1.

Sl. no. ϵ Energy Trajectory

1 ϵ = 0 E = 1
2

m(GMm)2

l2 Circle

2 ϵ < 1 E < 0 Ellipse

3 ϵ > 1 E > 1 Hyperbola

4 ϵ = 1 E = 0 Parabola

5 ϵ = 0.693 −0.175 Perihelion

Combining last two equations (12) and (13) to eliminate time and
write equation of trajectory as:

mr2

l
dϕ =

dr√
2
m

(
E + GMm

r

)
− l2

m2r2

.

Rearranging and integrating last equation, we get:

ϕ =

∫
l

r2
√

2m
(
E + GMm

r

)
− l2

r2

dr.

On solving this integration using Maple or by other method, we get

ϕ = tan−1
(

m2rGM − l2

l
√

2mr2E + 2m2rGM − l2

)
+ constant. (14)

2.3 Polar Form of Solution

Carrying out trigonometric rearrangements in the equation of conic
section in polar coordinates, we get:

r =
l2

m(GMm)
1

(1 + ϵ cos θ)
. (15)

Here, ϵ represents eccentricity and is expressed as:

ϵ =

√
1 +

2l2E
m(GMm)2 . (16)

The shape of the orbit depends upon the eccentricity (ϵ) and Table
1 depicts its values for our geometric interests.
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Table 2. Trajectory decid-
ing initial condition l = ϕ̇
and calculated quantities ϵ
and E at a glance used in
generating Maple plots.

l ϵ Energy Trajectory
1.0 0.0 0.5 Circle
1.2 0.44 −0.28 Ellipse
1.5 1.25 0.125 Hyperbola
1.414 1.0 0.0 Parabola
1.3 0.693 −0.175 Perihelion

3. Exploring Maple

The entire problem can be explored in Maple and then the trajec-
tory equations further used to generate polar plots.

3.1 Solving the Integration

The solution of the above integration represented as equation (14)
can be found in Maple with the following code:

Epr1 := 1/(rˆ2*sqrt(2*m*(En+G*M*m/r)-(l/r)ˆ2));

Epr2 := int(Epr1, r);

Epr3 := simplify(Epr2);

√
2 arctan

(√
r − 1

)
3.2 Solving the DE and Plotting Various Trajectories

In Maple, we are raising the expressions for kinetic and poten-
tial energy, Lagrangian and Lagrangian formulation, numerically
solving and plotting them. The following code may be executed
to maneuver various trajectories. In this process, initial boundary
conditions play a vital role. Table 2 depicts the choice of ϕ̇ that
decides ϵ and energy E.

restart;

T := (1/2)*m*((diff(r(t), t))ˆ2+r(t)ˆ2*(diff(phi(t), t))ˆ2);

V := -G*M*m/r(t);

L := T-V;

L1 := subs({diff(phi(t), t) = var4, diff(r(t), t) =
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Figure 1. Circular trajec-
tory for initial condition ϕ̇ =
1, ϵ = 0, E = 0.5.

var2, phi(t) = var3, r(t) = var1}, L);

Epr11 := diff(L1, var4);

Epr12 := diff(L1, var3);

Epr13 := subs({var1 = r(t), var2 = diff(r(t), t),

var3 = phi(t), var4 = diff(phi(t), t)}, Epr11);

Eq14 := Epr13 = l;

Epr21 := diff(L1, var2);

Epr22 := diff(L1, var1);

Epr23 := subs({var1 = r(t), var2 = diff(r(t), t),

var3 = phi(t), var4 = diff(phi(t), t)}, Epr21);

Epr24 := subs({var1 = r(t), var2 = diff(r(t), t),

var3 = phi(t), var4 = diff(phi(t), t)}, Epr22);

Epr25 := diff(Epr23, t);

Eq26 := Epr25-Epr24 = 0;

m d2

dt2 r (t) − mr (t)
(

d
dtϕ (t)

)2
+ GMm

(r(t))2 = 0

3.3 The Circular Trajectory

Introducing the initial condition l = ϕ̇ = 1:

Eq31 := isolate(Eq14, diff(phi(t), t));

254 RESONANCE | February 2025



CLASSROOM

Eq32 := eval(Eq26, Eq31);

with(plots);

G := 1; M := 1; m := 1;

Eq41 := r(0) = 1;

Eq42 := (D(r))(0) = 0;

Eq43 := phi(0) = 0;

Eq44 := (D(phi))(0) = 1;

En := eval(T+V, {diff(phi(t), t) = rhs(Eq44),

diff(r(t), t) = rhs(Eq42), r(t) = rhs(Eq41)});

1
2

l := eval(lhs(Eq14), {diff(phi(t), t)

= rhs(Eq44), r(t) = rhs(Eq41)})

1

\epsilon:= sqrt((2*En*lˆ2+1)/m(G*M*m)ˆ2)

0

ini1 := Eq41, Eq42, Eq43;

Eq51 := dsolve({Eq31, Eq32, ini1}, {phi(t),

r(t)}, numeric, output = listprocedure);

polarplot([rhs(Eq51(t)[3]), rhs(Eq51(t)[2]),

t = -Pi .. Pi], scaling = constrained,

thickness = 4, color = red, axesfont =

["HELVETICA", "ROMAN", 14]);

D (ϕ) (0) = 1.2

3.4 The Elliptical Trajectory

Introducing the initial condition l = ϕ̇ = 1.2:

Eq64 := (D(phi))(0) = 1.2:

En := eval(T+V, {diff(phi(t), t) = rhs(Eq64),

diff(r(t), t) = rhs(Eq42), r(t) = rhs(Eq41)})
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Figure 2. Elliptical trajec-
tory for initial condition ϕ̇ =
1.2, ϵ = 0.4, E = −0.28.

−.2800000000

l := eval(lhs(Eq14), {diff(phi(t), t) = rhs(Eq64),

r(t) = rhs(Eq41)});

1.2

\epsilon:= sqrt((2*En*lˆ2+1)/m(G*M*m)ˆ2);

0.4400000000

ini2 := Eq41, Eq42, Eq43:

Eq71 := dsolve({Eq31, Eq32, ini2}, {phi(t),

r(t)}, numeric, output = listprocedure);

polarplot([rhs(Eq71(t)[3]), rhs(Eq71(t)[2]),

t = 0 .. 5*Pi], scaling = constrained,

thickness = 4, color = red, axesfont =

["HELVETICA", "ROMAN", 14]);

3.5 The Hyperbolic Trajectory

Introducing the initial condition l = ϕ̇ = 1.5:

Eq84 := (D(phi))(0) = 1.5;
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Figure 3. Hyperbolic tra-
jectory for initial condition
ϕ̇ = 1.5, ϵ = 1.25, E =

0.125.

En := eval(T+V, {diff(phi(t), t) =

rhs(Eq84), diff(r(t), t) = rhs(Eq42),

r(t) = rhs(Eq41)});

0.125000000

l := eval(lhs(Eq14), {diff(phi(t), t) =

rhs(Eq84), r(t) = rhs(Eq41)});

\epsilon:= sqrt((2*En*lˆ2+1)/m(G*M*m)ˆ2);

1.250000000

ini2 := Eq41, Eq42, Eq43;

Eq91 := dsolve({Eq31, Eq32, ini2}, {phi(t),

r(t)}, numeric, output = listprocedure);

polarplot([rhs(Eq91(t)[3]), rhs(Eq91(t)[2]),

t = -2*Pi .. 2*Pi], scaling = constrained,

thickness = 4, color = red, axesfont =

["HELVETICA", "ROMAN", 14]);

3.6 The Parabolic Trajectory

Introducing the initial condition l = ϕ̇ =
√

2 = 1.414:
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Eq104 := (D(phi))(0) = sqrt(2);

En := eval(T+V, {diff(phi(t), t) =

rhs(Eq104), diff(r(t), t) = rhs(Eq42),

r(t) = rhs(Eq41)});

0

l := eval(lhs(Eq14), {diff(phi(t), t) =

rhs(Eq104), r(t) = rhs(Eq41)})

√
2

\epsilon:= sqrt((2*En*lˆ2+1)/m(G*M*m)ˆ2)

1

ini2 := Eq41, Eq42, Eq43;

Eq111 := dsolve({Eq31, Eq32, ini2},

{phi(t), r(t)}, numeric, output = listprocedure);

polarplot([rhs(Eq111(t)[3]), rhs(Eq71(t)[2]),

t = -2*Pi .. 2*Pi], scaling = constrained,

thickness = 4, color = red, axesfont =

["HELVETICA", "ROMAN", 14]);

3.7 Solving the DE and Plotting the Perihelion Trajectory

Mercury is observed to move in an elliptical orbit, but this orbit
does not quite close upon itself. The ellipse rotates, and the per-
ihelion11The point on its orbit nearest

to the Sun.
advances; this phenomenon is called precession. In our

consideration, planetary motion is governed purely by a potential
of form 1/r. Any departure from this idealized potential produces
precession. Although the Sun is the dominant source of gravity in
the solar system, other planets also exert an influence on Mercury.
We can write the correction terms as expansion of r−1 to various
powers. Furthermore, the inverse-square law of force applies to
two spherical bodies. The Sun is not perfectly spherical because
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Figure 4. Parabolic trajec-
tory for initial condition ϕ̇ =
1.414, ϵ = 1.0, E = 0.

the Sun rotates with a period of about 25 days, which causes a
solar equatorial bulge. This oblate Sun can be considered to have
a quadrupole moment, for which the potential energy is propor-
tional to r−3. According to our numerical treatment of the Kepler
problem, we readily proceed to include this contribution to poten-
tial energy; with such a term in our Lagrangian, we also obtain a
precessing orbit. Now, just adding the correction term to poten-
tial energy in equation (3) will cater to the purpose, followed by
executing the rest of the Maple worksheet. The Lagrangian with
the corrected term in potential energy will be:

L =
1
2

m
(
ṙ2 + r2ϕ̇2

)
−

GMm
r
− k′

1
r3 . (17)

Here, we suppose k′ = 0.02 and introduce the initial condition
l = ϕ̇ = 1.3 with our obvious scaling G = M = m = 1, follow the
entire Maple code as depicted below and look for the perihelion
trajectory plot.

restart;

T := (1/2)*m*((diff(r(t), t))ˆ2+r(t)ˆ2*

(diff(phi(t), t))ˆ2);
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V := -G*M*m/r(t)-0.2e-1/r(t)ˆ3;

L := T-V;

L1 := subs({diff(phi(t), t) = var4, diff(r(t), t)

= var2, phi(t) = var3, r(t) = var1}, L);

Epr11 := diff(L1, var4);

Epr12 := diff(L1, var3);

Epr13 := subs({var1 = r(t), var2 = diff(r(t), t),

var3 = phi(t), var4 = diff(phi(t), t)}, Epr11);

Eq14 := Epr13 = l;

Epr21 := diff(L1, var2);

Epr22 := diff(L1, var1);

Epr23 := subs({var1 = r(t), var2 = diff(r(t), t),

var3 = phi(t), var4 = diff(phi(t), t)}, Epr21);

Epr24 := subs({var1 = r(t), var2 = diff(r(t), t),

var3 = phi(t), var4 = diff(phi(t), t)}, Epr22);

Epr25 := diff(Epr23, t);

Eq26 := Epr25-Epr24 = 0;

Eq31 := isolate(Eq14, diff(phi(t), t));

Eq32 := eval(Eq26, Eq31);

m d2

dt2 r (t) − l2

m(r(t))3 +
GMm
(r(t))2 + 0.06 (r (t))−4 = 0

with(plots);

G := 1; M := 1; m := 1;

Eq41 := r(0) = 1;

Eq42 := (D(r))(0) = 0;

Eq43 := phi(0) = 0;

Eq44 := (D(phi))(0) = 1.3;

En := eval(T+V, {diff(phi(t), t) = rhs(Eq44),

diff(r(t), t) = rhs(Eq42), r(t) = rhs(Eq41)});

−.1750000000

l := eval(lhs(Eq14), {diff(phi(t), t) =

rhs(Eq44), r(t) = rhs(Eq41)});

\epsilon;‘ := sqrt((2*En*lˆ2+1)/m(G*M*m)ˆ2);
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Figure 5. Perihelion mo-
tion for initial condition ϕ̇ =
1.3, ϵ = 0.693, E = −0.175.

0.6391400473

ini1 := Eq41, Eq42, Eq43;

Eq51 := dsolve({Eq31, Eq32, ini1}, {phi(t),

r(t)}, numeric, output = listprocedure);

polarplot([rhs(Eq51(t)[3]), rhs(Eq51(t)[2]),

t = -Pi .. 100*Pi], scaling = constrained,

thickness = 3, color = red, axesfont =

["HELVETICA", "ROMAN", 14]);

4. Conclusions

The Experimenting with
eccentricity within the
range 0 < ϵ < 1 provides
insight into the elliptical
paths and perihelion
behavior.

Kepler problem can be explored interactively, allowing for
plotting various orbital trajectories, including the intriguing per-
ihelion shift. Experimenting with eccentricity within the range
0 < ϵ < 1 provides insight into the elliptical paths and perihe-
lion behavior. Starting with the Lagrangian of the central force
in the Kepler problem, as given in equation (6), we can solve the
first-order differential equation (11). Simplifying by eliminating
the angular component makes it easier to apply the method of
separation of variables for further analysis. The solution can be
expressed in polar coordinates, which can be plotted using any
programming language familiar to the reader. The authors have
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provided examples in Maple, and even a C-language interface can
be utilized to explore and fully understand the Kepler problem.
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