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Abstract. Complex networks and d-dimensional Euclidean lattices have both been researched 

using coupled map lattices. Additionally, it has been examined on the deterministic fractal 

known as the Sierpinski Gasket. In this work, we investigate the coupled map lattice on a 

random fractal called diffusion limited aggregate (DLA). We create a map and examine it from 

the perspective of the circle map. In the event of a DLA, a site's neighbors may number one to 

four. We examine the scenario in which the total weight does not stay constant. In this regard, 

we plot bifurcation diagrams. 
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INTRODUCTION 

Dynamics-displaying fractals on Coupled Map lattices 

 

A system that has been extensively investigated is coupled map lattices on Euclidean lattices 

in d-dimensions. In this regard, the most researched maps are circular, tent, and logistical maps. 

Few studies have been done on the dynamics of fractals. Fractal connectivity scales with 

distance.  

In the case of connected map lattices, such systems exhibit a transition from spatial order to 

spatially uniform or chaotic states when coupling is changed. Based on simulations of neural 

networks, coupled oscillators, and coupled maps, nodes are divided into regions of fixed point, 

chaotic, and oscillating regions.   

Network connectivity has an impact on how activities are divided inside networks. We can 

achieve these partially arrested states in what are known as chimaera states. This article here 

examines a fractal model known as the diffusion limited aggregate (DLA). Coupled map 

lattices are dynamical networks that act like complicated models and are spatially 

homogeneous and computationally feasible. Things having fractal architectures exhibit 

exciting physical phenomena [3]. In CMLs, coupling is diffusively discrete. Similar to the 

logistic map, the circle map is a chaotic map. Similar to the dynamics of neurons, chaotic, 

oscillatory, and fixed-point behavior can be seen. Each of these many dynamical kinds is 

dependent upon the type of coding and the applied stimulus [4].  

If systems exhibit statistical symmetry, long-range interactions, and are probabilistic in nature, 

they can have chaotic temporal states and long-range spatial order with temporal disorder. We 

can learn about the stability of randomly connected elements from the Wigner-May theorem. 

The instabilities to a spatially uniform state vary, and the eigen-values of fractals exhibit 

intriguing structure [5]. 
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Diffusion Limited Aggregate (DLA) 

Written and Sander [1] generated a metal-particle aggregation process model whose 

correlations were measured. They concluded that, like metal aggregates, the density 

correlations in the model aggregates decrease with distance along a fractional power law. The 

metal aggregates' radius of gyration follows a power law pattern. 

The DLA model is based on the Eden model, in which randomly added particles are introduced 

to sites next to occupied sites one at a time. However, Written and Sander discovered that the 

fractional power law of distance was how the metal aggregates slid off. The irreversible growth 

process is the source of these relationships. Similarities between the DLA model and the 

discrete Langer-Krumbhaar model of dendritic development are found [6]. 

COUPLED MAPS ON DLA 

Initially, we start with a seed particle at the lattice origin. Next, we introduce a second particle 

at a random location, a considerable distance from the origin. Up until it reaches the location 

next to the seed, the second particle travels at random. After then, this particle joins the cluster. 

Similar actions are taken by additional particles that are introduced at random times. If a 

particle crosses the lattice's borders, it is eliminated and a new one is added. Over 105 sites are 

used to recreate the DLA. 

We define variable value xi,j(t) to the site (i,j) at time t. The evolution is given by: 

𝑥𝑖,𝑗(𝑡 + 1) = (1 − e)f (𝑥𝑖,𝑗 (𝑡)) +
e

4
 (f (𝑥𝑖+1,𝑗(t)) + f (𝑥𝑖−1,𝑗(t)) + f (𝑥𝑖,𝑗+1(t)) + f (𝑥𝑖,𝑗−1(t)))              (1) 

where sites that are not part of the DLA cluster are considered to have contributed nothing and 

have not changed over time. 

Alternatively, 

𝑥𝑖,𝑗(𝑡 + 1) = (1 − 𝑁(𝑖, 𝑗)
e

4
)  f (𝑥𝑖,𝑗 (𝑡)) + 

e

4
 ∑ f (𝑥(𝑖,𝑗) (𝑡))(i,j)                                                                 (2) 

where N(i,j) is the total number of DLA cluster neighbors for site (i,j). Sites that are not part of 

the DLA cluster are not taken into account and are not thought to have changed over time. 

In order to clarify the distinction, we consider the scenario in which site (i,j) on the cluster has 

just two neighbors: (i+1,j) and (i-1,j). By (1), the evolution will be: 

𝑥𝑖,𝑗(𝑡 + 1) = (1 − e) f (𝑥𝑖,𝑗 (𝑡)) +
e

4
 (f (𝑥𝑖+1,𝑗(t)) + f (𝑥𝑖,𝑗−1(t)))                               (3) 

And that according to (2) will be 

 𝑥𝑖,𝑗(𝑡 + 1) = (1 −
e

2
) f (𝑥𝑖,𝑗 (𝑡)) +

e

4
 (f (𝑥𝑖+1,𝑗(t)) + f (𝑥𝑖,𝑗−1(t)))                                                          (4) 

The total of the weights is not conserved in rule (1), but it is in rule (2). In rule (1), the evolution 

of a given site is dependent on the number of neighbors; in rule (2), this dependency is absent. 

A typical DLA cluster produced by the aforementioned technique is displayed in Fig. 1. We 

examine the coupled circle map's dynamics on the DLA. 
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Figure 1: A typical DLA cluster  

Circle map 

The circle map is a one-dimensional map which maps a circle onto itself, where n+1 is 

computed mod 1 and K is a constant. Note that the circle map has two parameters  and K.  

can be interpreted as an externally applied frequency, and K as a strength of nonlinearity. The 

circle map exhibits very unexpected behavior as a function of parameters, as illustrated below 

[7]. 

 

The circle map coupled on a DLA with one, two, three, and four neighbours is now plotted 

using bifurcation diagrams. Plotting the bifurcation diagrams against the control parameter ε, 

which ranges from 0 to 1, is done for two-dimensional sites. 

 

Bifurcation Diagrams for Circle Map 

 

Figure 2: Bifurcation diagram for the non-conserved case for sites with one neighbor. 
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Figure 3: Bifurcation diagram for the non-conserved case for sites with two neighbors. 

 

Figure 4: Bifurcation diagram for the non-conserved case for sites with three neighbors. 

 

Figure 5: Bifurcation diagram for the non-conserved case for sites with four neighbors. 
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Conclusion 

Since DLA is a well-studied model for random fractals, we examine its dynamics. On this 

random fractal, we examine coupled circle maps. It is discovered that the band attractor differs 

in each scenario, whether there are one, two, three, or four neighbours. Although there are no 

periodic windows, the regions exhibit band periodicity. Graphs of this kind appear to be 

prevalent in all non-conserved scenarios. 
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