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ABSTRACT: 
 

 

Imaginary numbers are just not the part of mere mathematical jugglery; it carries 

relevance in the real world. Mathematical models involving imaginary time are efficient 

to predict effects that we observe. Here, we configure the established special relativity 

in complex numbers. Further, in quest of human race to develop a mathematical model 

that describe the universe we live in, we look further for handling effects which are 

never been observable. 
KEYWORDS: Special relativity, Lorentz transformation, Complex numbers, Conformal mapping, Proper 

velocity 

1. Introduction 

The space-time event may be chart as yixz   can also be thought as an ordered pair  yx,  in 

argand plane where we enforce obvious substitutions ctx   ry   to thus obtain irctz   and 

ordered pair  rct,  while in another frame the quantities may be  ''' yixz   or '' irctz   

abiding Einstein’s special relativity. To properly scale our expressions we shall prefer velocity of 

light unity by considering 1c  which also in turn offer simplicity again without the loss of 

generality. Thus, we consider irtz  or ordered pair  rt,  and for another inertial frame 

''' irtz   or  ',' rt .   

Now, the square of the complex number charting an event on simplification yields another 

complex number say w ; technically - conformal mapping from wz   plane in which plot 

corresponds to function  zfw  . In this way, a given function f  assigns to each point in z  in 

its domain of definition D  the corresponding point  zfw   in w -plane, we say that f  defines 

mapping into w -plane. The conformal mapping of complex plane 

  22222 2 WiStrirtz   

Thus, we have 2zw  , thus possesses ordered pair    rtrtWS 2,, 2222  . It is interesting to 

note here that the invariant quantity is special relativity is the ‘interval’ which is denoted as by 

S  can be picked up as  2Re z  or  wRe
 
which corresponds to hyperbola 222 Srt  . 

Similarly imaginary part  2Im z
or 

 wIm
 
corresponds again to hyperbola rtW 22  . The 

later hyperbola is from the family of the former hyperbola obtained after 
4


rotation about z-axis 

with 22

2

1
WS  .   



IJMAR Vol. 5 No. 1 (June, 2018) ISSN 2347-9884 

URL: maldacollege.ac.in/ijmar.php  Peer Reviewed Journal 

 

2 IJMAR-Indian Journal of Multidisciplinary Academic Research 

 

 

Figure 1. Grid of lines for real-part ,...2,1,022  Srt  and imaginary-part 

,...2,1,02 Wxy  formed by hyperbolas with involved constants S  and W  which are universal 

for all inertial observers. 

Here we propose modified Argand plane wherein we plot quantities S  along real axis which are 

invariant quantities of special relativity and the beauty is that these are essentially the same for 

all inertial observers while quantities W  on imaginary axis which sounds derived versions of S , 

hereafter referred as SW-Argand plane or simply SWA plane. To unfold the structure of SWA 

plane, we shall look at elemental grid equations; ,...2,1,022  Srt , 

,...2,1,02 Wrt  and plots as depicted in Figure-1 

In Euler representation the involved complex numbers follows as; 

v
t

r
rtRReirtz i 1122 tantan,,   

 

 21

2

1

22

122222222 2tan
1

2
tan

2
tan2,,2  v

v

v

rt

rt
rtReRrtirtzw i  





 As we 

represent the event in a complex form as z which depends upon time depicted on real axis as ct  
and space on imaginary axis depicted as r  that is mathematically expressed as;  
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  rictrctz ,  

In case if the object is not moving, i.e. r  is not function of time and its arbitrarily assigned value 

0rr   develops a world-line parallel to real axis at or .  

In another case of an object moving with uniform velocity  tr
dt

d
v  , we have;   tvtr   for 

appropriate boundary conditions 

      viic

v
i

evtectevtctvtictrctz
11

1

tan2tan2
tan22

11,




   

Thus, above equation represents a world-line inclined with real axis at an angle 
c

v1tan  and 

time ticked at the rate of c  which is universal constant according to Einstein’s Principle of 

Relativity (EPR). An inertial observer with reference to a frame F travelling with uniform 

velocity v  at any time t  possess location described by modulus 
21 ct   which depends 

linearly on time and its velocity  . The argument is the angle that the line OZ  makes with real 

axis expressed as;  1tan . The slope of the line is obviously  tan . A faster moving 

object will have higher angle with real axis that limits up to 4  as nothing can travel faster than 

light. However its location from origin of space-time coordinates floats away at rate  21 c

per unit sec.  

2. Complex Lorentz Transformation as Conformal Mapping 

The Lorentz transformation equations with usual notations;  yxx  '  and  xyy  '  for 

obvious substitution ctx   and ry    we get;  rctct  '  and  ctrr  '  be expressed 

by a single elegant expression as;  

 zizz  '  

The above expression is known as a Complex Lorentz transformation equation which includes a 

pair of usual Lorentz Transformation equations where, ''' yixz  , irctz   represents 

complex conjugate of irctz   and the reader may explore 

    222222222 ''Re'Re Srtcrtczz   

If we consider the clock in moving frame of reference F’ located at origin we opt mathematically 

0'r  and use a substitution 't . Thus, we get; 

222222 Srtcc   
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c

S

ct

r
t 










2

1  

If we choose velocity trv /  and use   for compact representation, its differential form appears 

as; 








2

2

1

1

c

vd

dt
. 

The complex velocity    can just be obtained by time differentiation of the event equation 

rictz  . Here, c is absolute constant may be considered as unity for scaling graphs; 

vievvi
dt

dr
ic

dt

dz 1tan211


  
 

Treating 
dt

dr
v   as usual/ordinary definition of velocity that forms imaginary part and 1c  

forms real part to constitute the newly devised term as complex velocity  . Note that, while 

representing the complex velocity, the argument in velocity-argand plane is 
21 v  and the 

argument is ; v1tan   . As the relative velocity v  increases (i) the modulus or imaginary part 

in the argand plane also grows while the real part remains fixed at value preferred for scaling i.e. 

at 1c  (ii) the argument also increases bound to 2  for infinite velocity. This leads to the 

classical case wherein there is no customary to the assigned usual/ordinary velocity and that can 

attain infinitely large value.  Note that     vievviv
1tan2222 121


  and 

    222 1Re   v   is an invariant quantity which may be related to Einstein’s Special 

Relativity.  

The proper complex velocity can be devised by obtaining proper-time 

 

derivative of last 

equation treating v  as uniform velocity (inertial frame) and c as absolute constant; 

c

v
i

evcivcz
1tan

22


   
 

Treating 


 z
d

d
z , 


 t

d

d
t , 


v

dt

dr

d

dt

dt

dr
r

d

d
r  , where v  is usual/ordinary 

velocity. Note that while representing the proper complex velocity, the argument in velocity-

argand plane is 2

2
2

1

1
1

v

v
v




  and the argument is same as; v1tan   . As the relative 

velocity   increases the modulus also grows and blows up at cv  .  
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To represent in a properly scaled manner we prefer 1c hence, the equations takes form as; 

vie
v

v
ivz

1tan

2

2

1

1 




 

 
 

It represents a point in the velocity-argand plane and the modulus behaves quite close to   and 

blows at cv   as depicted in the Figure 2. However, its argument roles from the 0 to 4   for 

velocity ranging from 0 to 1 (i.e. 1 cv ).  

 

Figure 2 Variation of 21

1


 and 2

2

1

1








 with 


. 

The important aspect of generating a conformal map  
2w a invariant quantity is to find 

2  

and its real part filters out invariant quantity.  

It’s Conformal mapping     iVU
v

v
ivivw 



2

2222

1

2
121   here 1U  and 

21

2

v

v
V


 . 

 

2

2

1

1









 

21

1
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Figure 3 Argand plot for iVU
v

v
iw 



2

2

1

2
1 as a parametric function of relative velocity 

v
 

where real part 1U  remains constant while imaginary part 21

2

v

v
V


  grows as a function of v .

 

Its Euler version may be represented as;
 ivi eRe

v

v
w 






1tan2

2

2
2

1

1
 

Here 1U  and 
21

2

v

v
V


  represents complex number in mapped w  plane with U on real axis  

and V on imaginary axis. Following Figure 3 depicts that conformally maped complex function 

w  blows as 1v .  

The steady object is represented by 10 i  while the fastest, say 9999.0v  move with 

71245.7070537.70 i units. The real part track the imaginary component as particle 

accelerated to approach speed of light. 

Composite Velocity defines the way we add or subtract relative velocities in special relativity. 

Now, we shall express the velocities in a moving inertial frame F’ as; 

   ctrirctirctz   '''  

            trtrrtrtctrrctzMod  22'
222222
  



IJMAR Vol. 5 No. 1 (June, 2018) ISSN 2347-9884 

URL: maldacollege.ac.in/ijmar.php  Peer Reviewed Journal 

 

IJMAR-Indian Journal of Multidisciplinary Academic Research 7 

 

       
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222
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41
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
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


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
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
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

1
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Figure 4: The variation in complex proper velocity’s isolated two components 

If the relative velocity tru   and 1cu  then physical situation prevails for   then, the 

argument will be law of velocity addition as; 

  











 

1

11

1
tan'




zArg  

For 1c , u1  and v  , then we offer the popular version of Special Relativity; 

The resultant velocity will be;   
uv

vu
zArg






1
'  
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 
21

Re
v

v


  and  

21

1
Im

v
  as a function of v  (for 1c ) which clearly reveals that it 

begins with unit difference at 0v to 994.0 as shown in Figure 4.  

Figure 5 depicts the two versions of velocity i.e. complex velocity and proper complex velocity 

that resembles classical/Newtonian velocity and relativistic velocity respectively.  

 

Figure 5: Variation of complex velocity    and proper complex velocity    with ordinary velocity for 

scalling 1c . 

The proper complex momentum  p we shall define as a product of proper mass  0m  and the 

proper complex velocity    

0mp   

 ivcm
dt

dz
mmp   000

 

Thus the real part cmpx 0  and imaginary part vmpy 0  reveals that former represents 

relativistic momentum (relativistic mass multiplied by velocity) later depends on relativistic mass 

or energy 
c

E
.  

            20

2

0

222

0

222 222  mvcicmvcivcmPPiPPp yxyx   

0
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Here, the quantity  2Re p  is invariant by definition and possess value  20cm  that is same for all 

inertial observers i.e. the observer in another inertial frame finds it    20

2'Re cmp  . Moreover, 

we know, 2

0

2 cmmcE   hence  

 20

22 cmpp yx   

Substituting 
c

E
cmpx  0  and Pvmpy  0  calling it as relativistic momentum in the last 

equation, we get; 

 20

2

2

cmP
c

E









 

This the famous relativistic energy equation; 42

0

222 cmcPE  . This re-formulates the definition 

of the proper complex momentum as; 

c

E
iPp   

The Lorentz transformation equations for momentum with usual notations;  yxx ppp  '  

and  xyy ppp  ' . The complete expression for complex representation of momentum can  

expressed by a single elegant expression as; ''' yx pipp   

 pipp  '  

Here yx ippp   represents complex conjugate of yx ippp   and the reader may explore 

    222

0

22 Re'Re Scmpp  . Its again a hyperbola of similar form and grid as discussed 

above.  

The proper complex acceleration   we shall obtain by differentiating the proper complex 

velocity with respect to proper time. 

     
dt

d
icv

dt

d

d

d
icv

d

d
civ

d

d

d

d 













   

The real-part:     4222242 1  aaaavv    

The imaginary-part: 43 ac   
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(Note that, here, 321
 a

v
 , the usual acceleration va   and 222 1    ) 

Thus, we have proper complex acceleration,  34 1 



 ia

d

d
 . By the conformal mapping 

of the proper acceleration we can find out the complex quantity 2 .  

  36822 21  ia   

   
 42

6
26822

1

1
1Re









 aa ,  

 42

32
8232

1

2
2Im









a
a . Our conformal 

transformation based on Lorentz transformation implicates new invariant quantity depicted as 

above  2Re  . 

(Here we have     11111 226   ,     111 2 ) 

To obtain proper complex force f , we differentiate the proper complex momentum p with 

respect to proper time  ; 

c

E

d

d
iP

d

d
p

d

d


  

cm
dt

d
iP

dt

d
f 0   

4

0  aimFf   

Here, we have, usual Newtonian P
dt

d
F  , 321

 a
vdt

d
  . Also Fam 0  hence, we get; 

 31  iFf   

By definition 2f  will be represented as;   362222 21  iFf   and the 

   62222 1Re   Ff  represents the invariant quantity. In SW Argand plane the invariant 

interval for all inertial observers  62222 1   FS  i.e. 
 621  


S

F

. 

From the theory of complex numbers we have encountered all the ideas encompassed in 

Einstein’s Special Relativity. Moreover, a few new invariant quantity came in the scope of 
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observation and discussions. The subject can be further explored to establish existing facts and 

hunt for further new issues that were not in scope of usual approach.  
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