
Classroom

In this section of Resonance, we invite readers to pose questions likely to be raised in a
classroom situation. We may suggest strategies for dealing with them, or invite responses,
or both. “Classroom” is equally a forum for raising broader issues and sharing personal
experiences and viewpoints on matters related to teaching and learning science.

S W Anwane

Deparment of Physics

Shri Shivaji Science College

Congress Nagar, Nagpur, India.

Email:

swanwane2000@yahoo.com

Y S Anwane

Department of Civil Engineering

St. Vincent Pallotti College of

Engineering and Technology

Wardha Road

Nagpur, India.

Email: ysanwane@gmail.com

Foucault’s Pendulum
Exploration Using MAPLE18∗

In this article, we develop the traditional differential equation for
Foucault’s pendulum from physical situation and solve it from
standard form. The sublimation of boundary condition eliminates
the constants and choice of the local parameters (latitude, pendu-
lum specifications) offers an equation that can be used for a plot
followed by animation using MAPLE. The fundamental concep-
tual components involved in preparing differential equation viz;
(i) rotating coordinate system, (ii) rotation of the plane of oscilla-
tion and its dependence on the latitude, (iii) effective gravity with
latitude, etc., are discussed in detail. The accurate calculations
offer quantities up to the sixth decimal point which are used for
plotting and animation. This study offers a hands-on experience.
Present article offers a know-how to devise a Foucault’s pendu-
lum just by plugging in the latitude of reader’s choice. Keywords
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can develop a miniature working model/project of the pendulum.
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Figure 1. Schematic repre-
sentation of Foucault’s pen-
dulum swinging.
Courtesy: quora.com

1. Introduction

Understanding the pendulum is one of the milestones in the de-
velopment of physics. In 1851, Leon Foucault, conceived a sim-
ple devise that demonstrates the spin motion of Earth. This device
was tagged with his name Foucault’s pendulum (FP) after its pub-
lic exhibition at the Meridian of Paris observatory. He then used a
brass coated lead bob of 28 kg suspended from the roof with a 67
m long wire hooked in the dome of the Panthéon. For the latitude
of Paris, the plane of the pendulum’s swing rotated clockwise ap-
proximately 11.3o per hour, making a full circle in approximately
31.8 hours.

Leon Foucault
(1819–1868)
Courtesy: eduspb.com

The schematic representation of the bob-traced trajectory of the
Foucault’s pendulum is depicted in Figure 1. A second temporary
installation was made for the 50th anniversary in 1902 [1]. During
the reconstruction of the museum (1990), the original pendulum
was temporarily displayed at the Panthéon (1995) [2]. In 2010,
the cable suspending the bob snapped [3, 4].
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When FP is suspended at the North or South Pole, the plane of
oscillation of the pendulum remains fixed relative to the distant
mass of the universe while the Earth rotates underneath it. There-
fore, with reference to Earth, the plane of oscillation of the pendu-
lum at the North Pole undergoes a full clockwise rotation during
one day; a pendulum at the South Pole rotates counter-clockwise.
On the contrary, at the Equator, its plane of oscillation remains
fixed to the earth. At intermediate latitudes, the plane of oscilla-
tion rotates as a sinusoidal function of the latitude. The involved
precisional motion is governed by the solution of the differential
equation (DE) of the FP. We shall now rush through all the com-
ponents that are used in building up the DE and its solution –
manually and by exploring MAPLE18.

2. Theory: The Differential Equation and Solution

We shall process the basic components to build the partial differ-
ential equation (DE) for FP followed by the theoretical solution
in terms of parametric equations followed by its plotting and ani-
mations.

Figure 2. Fixed rectan-
gular coordinate system S ,
named laboratory coordinate
axes XL, YL and ZL, and ro-
tating coordinate system S ′

about Z axis denoted by an-
other set of mutually per-
pendicular coordinate axes
XR, YR and ZR. At time t,
the angular description θ(t)
is depicted while Z being the
axis of rotation, remains un-
changed: ZR = ZL.
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2.1 Basics of Rotating Coordinate System

We proposeWe follow the equations
of circular geometry in

which −→r = xî + y ĵ =
r cos θî + r sin θ ĵ = rî′.

Thus, we have new unit
vector in the rotating

frame:
î′ = cos θî + sin θ ĵ. Its

perpendicular vector ĵ′
can be obtained simply

by adding π/2 in the
angle θ. Thus, we have,

ĵ′ = cos(θ + π/2) î +
sin(θ + π/2) ĵ =
− sin θî + cos θ ĵ.

to consider two coordinate systems S and S ′ offer-
ing a fixed and a rotated coordinate system at an angle θ respec-
tively. To mark a continuously rotating coordinate system, we
prefer this angle θ to be a function of time and the rate of rotation
to be accounted by a parameter ω (often referred as the angular
frequency) as d

dtθ(t) = ω with obvious angular period 2π. Figure
2 represents two such coordinate systems at some time t. The re-
lation describing the position and velocity in coordinate systems
S and S ′ are:

−→r = xî + y ĵ + zk̂,
−→
r′ = x′ î′ + y′ ĵ′ + z′k̂′ .

The position vector physically remains the same though observers
in two different frames S and S ′ designate them as −→r and

−→
r ′ re-

spectively. As this entity ‘position vector’ is the same, we mathe-
matically quote this in the form of (1):

−→r = −→r′ . (1)

Here, we considerThe position vector −→r =
r(cos θî + sin θ ĵ) = râr,

for polar unit vector
âr = cos θî + sin θ ĵ, and

its time derivative by
chain rule d−→r

dt =
d−→r
dθ

dθ
dt , at

r = const. For dθ(t)
dt = ω

and d−→r
dθ =

r d
dθ

(
cos θî + sin θ ĵ

)
=

r(− sin θî+cos θ ĵ) = r(âθ)
for the another polar unit

vector
âθ = − sin θî + cos θ ĵ.

Thus, we have,
d−→r
dt = ωrâθ.

that S ′ coordinate system is rotating and hence

we have non-vanishing
dî′
dt
,

d ĵ′
dt

unlike vanishing
dî
dt
,

d ĵ
dt

. Thus,
differentiating the position vector with respect to time t depicted
in (1) to obtain velocity:

d−→r
dt
=

d
−→
r′

dt
. (2)

dx
dt

î +
dy
dt

ĵ =
d(x′ î′)

dt
+

d(y′ ĵ′)
dt
,

dx
dt

î +
dy
dt

ĵ =
d(x′)

dt
î′ + x′

d(î′)
dt
+

d(y′)
dt

ĵ′ + y′
d( ĵ′)

dt
,
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Substituting: dx′
dt = v′x,

dy′
dt = v′y, dx

dt = vx,
dy
dt = vy,

d
dt î
′ = ω ĵ′, d

dt ĵ′ =
−ωî′, d

dt î = 0 and d
dt ĵ = 0 ,

vxî + vy ĵ = v′xî′ + x′ω ĵ′ + v′y ĵ′ − y′ωî′ .

For vxî + vy ĵ = −→v , v′xî′ + v′y ĵ′ =
−→
v′ and −→ω = ωk̂, we get the

emperical relationship between velocity in two frames from (2)
as:

−→v = −→v′ + −→ω × −→r . (3)

Above equation (3) in terms of displacement vector can be ex-
pressed in the form of a differential operator as following:

d−→r
dt
|S = d

−→
r′

dt
|S ′ + −→ω × −→r (4)

Thus, using (4), we can set-up the differential operator which
caters us to find the vector in frame S if we know that vector in
frame S ′. This differential operator can be expressed as:

d
dt
|S −→

d
dt
|S ′ + −→ω×. The differential operator will enable us calculate the

velocity relationship if we know the position vector and its re-
peated use enable us to find relation acceleration stating acceler-
ation in two frames – S and S ′. MATRIX lines of

latitude and longitude
come together to form a
matrix/grid. It will allow
you to pinpoint your
location with a high
degree of accuracy.
Latitude is the angular
distance measured north
and south of the Equator.
Latitude on the Equator
is 0o, 90o at the North
Pole, and −90o at the
South Pole.

(
d
dt

d
dt

)
S
−→

((
d
dt

)
S ′
+
−→ω×

) ((
d
dt

)
S ′
+
−→ω×

)
,

which on simplification offers a form as following when operated
on position vector:

(
d2

dt2

)
S
−→

(
d2

dt2

)
S ′
+

d−→ω
dt
× −→r + 2−→ω × d−→r

dt
+ −→ω ×

(−→ω × −→r )
.

Now, if the observer is in the rotating frame (say on the earth)
and would like to know the quantity, say acceleration, in the fixed
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frame (Sun) then the equations are required to be re-arranged and
we shall prefer to incorporate the term angular acceleration −→α =
d−→ω
dt

in the last relation, we get:

(
d2

dt2

)
S ′
−→

(
d2

dt2

)
S
− −→α × −→r − 2−→ω × d−→r

dt
− −→ω ×

(−→ω × −→r )
. (5)

If we multiply the above relation by mass m on both sides, we
have the relationship:

m
−→
a′ = m−→a − m−→α × −→r − 2m−→ω × −→v − m−→ω ×

(−→ω × −→r )
.

Thus, the force in rotating frame S ′ (Earth) is termed as;

−→
F′ = −→F − −→F EULER − −→F CORIOLIS − −→F CENTRIFUGAL . (6)

In (6), we have
−→
F′ = m

−→
a′ representing the force in rotating

frame (say observer on the Earth),
−→
F = m−→a represents force in

fixed frame (observer steady with respect to Earth, say observer
on Sun),

−→
F EULER = −m−→α × −→r for −→α being angular acceleration,−→

F CORIOLIS = −2m−→ω × −→v is the Coriolis force, (refer Figure 3)

Figure 3. The Corio-
lis force causing rotation
of the plane of oscilla-
tion of Foucault’s pendulum
in clockwise and counter-
clockwise direction in north-
ern and southern hemisphere
marked by the Equator.
Courtesy: neatorama.com
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−→
F CENTRIFUGAL = −m−→ω ×

(−→ω × −→r )
is the centrifugal force. This

Coriolis force is capable of rotating the plane of oscillation of FP
in the clockwise direction in the northern hemisphere while in
the counter-clockwise direction in the southern hemisphere elab-
orated in the next article.

2.2 Rotation of the Plane of Oscillation of FP

Due to the spin motion of Earth, the plane of oscillation of FP
rotates. On the North Pole, the plane of oscillation describes a
complete rotation in 24 hrs. As one travels towards the Equator,
its period of rotation decreases, and at the Equator, the rotation
of the plane ceases which turns counter-clockwise as one travels
towards the South Pole to regain its period to 24 hrs. Mike Town
and John Bird of University of Washington carried out experi-
ments to physically verify the period of rotation of FP which con-

Figure 4. Depiction of the
Poles, Equator, Latitudes
and Longitudes.
Source:
http://bookmarkurl.info/images/what-
are-latitude-and-
longitude/what-are-latitude-
and-longitude-5.jpg
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cluded the same. A similar reporting has also been made earlier
[5]. Now, we shall find the functional variation of this rate of rota-
tion of the plane of oscillation (angular frequency ω = 360/24 =
15o/hr) of FP as a function of the latitude. Any point on spheri-
cal Earth can be designated by latitude and longitude (angle) as
shown in Figure 4.

Now, consider two points in close proximity, say, P1 and P2 on
the surface of Earth which we shall consider spherical in shape
and spinning about an axis passing through the north–south pole.
Let the angular velocity of Earth be −→ω that will cause the rotation
of point P2 about P1 with velocity −→v . The basic rotational motion
offers relationship:

−→v1 =
−→ω × −→r1,

−→v2 =
−→ω × −→r2. (7)

Here r is the radius of spherical Earth forming one of the spherical
coordinates. The vector −→r of the point P1 describes latitude θ1
while the point P2 describes latitude θ2. Their distances from
axis of rotation are r1 = r cos θ1, r2 = r cos θ2 for Earth revolving
about an axis passing through north–south pole.

Thus, it is obvious that −→ω is normal to −→r1 and −→r2, and hence we
can simplify the angular velocity of P1 about P2 and P2 about P1

are v1 = ωr1 and v2 = ωr2 respectively. Now, the difference in

Figure 5. Rotation of a
point P1 about P2 on the
spinning Earth.
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Table 1. Comparative data
for latitude θ, angular fre-
quencyωP, and period of ro-
tation of the plane of oscilla-
tion TP for the place P.

Place θ ωP TP

P degree {μrad/s} hours
Paris 48.86 54.77 31.86
Shrinagar 34.083 40.75 42.82
New Delhi 28.644 34.86 50.06
Nagpur 21.146 26.23 66.52
Bangalore 12.972 16.32 106.91
Kanyakumari 08.088 10.23 170.57
Sydney -33.865 -40.52 -43.06

the velocity can be expressed as vdif = v1 − v2 = ω (r1 − r2). Note
that here r1, r2 are the radius of the points P1, P2 from the center
of earth which is origin of coordinate system (see Figure 5). This
quantity can be expressed from the geometry as rdif = r1 − r2 =

R sin(θ2 − θ1). Thus, we have:

−−−→|ωP1| = vdif

rdif
=
ω (r1 − r2)

r sin(θ2 − θ1)
.

From the geometry, we have r1 = R cos (θ1) , r2 = R cos (θ2)
which on substitution in the above equation leads to:

−−−→|ωP1| = ω (cos (θ1) − cos (θ2))
sin(θ1 − θ2)

.

Here, substituting θ2 = θ1 +Δθ in the numerator and θ2 − θ1 = Δθ
in the denominator, we get: Note that, on

substitution, the angular
velocity of Earth is ω =
dθ
dt =

2π
24 × 60 × 60

=

72.72 × 10−6 rad/sec or
(15o/hr). For latitude of
Paris (P)
ωP = 54.77 × 10−6

rad/sec=11.29o/ hr, and
the period

TP =
2π
ωP
= 31.86 hrs.

−−−→|ωP1| = ω (cos (θ1) − cos (θ1 + Δθ))
sin(Δθ)

.

For the limiting condition of Δθ → 0, we have P1, P2 close to
each other, the above equation reduces to (8) using basic trigono-
metric identities:

lim
Δθ→0

−→|ωP1| = |ω| sin θ1 . (8)

Reader may calculate this data for his latitude. However, a set of
this data for sample places is depicted in Table 1.
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Figure 6. Variation of an-
gular frequency ωP with lat-
itude.

Figure 7. Variation of pe-
riod of rotation of FP with
latitude.

At the North Pole, the time period of rotation of the plane of os-
cillation of Foucault’s pendulum is T = 24 hrs which increases as
one travels to the Equator ceasing rotation at Equator (see Figure
6). Further, as one proceeds towards South Pole from the Equator,
time period regains periodicity which goes on decreasing until 24
hrs at South Pole. Figure 7 shows variation of the period of rota-
tion of FP as one rolls from the north to south pole. The meaning
of negative sign appearing with the time period T is attributed to
counter clockwise rotation.
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2.3 Gravity with Latitude

For practical purposes, we consider acceleration due to the grav-
ity g = 9.80655 m/s2. However, for precise calculations, we shall
consider more accurate value of gravity that depends upon the lat-
itude and elevation. At the Pole, gravitational pull is maximum
and its accurate value is g = 9.787458554 m/s2 and is known as
the normal equatorial value. Due to the spin motion of Earth,
the centrifugal force mω2r depends upon the latitude as the axis
of rotation (passing through N–S) alters the centrifugal force as
r = R cos θ is the radius of rotation. Thus, we have two forces
(i) Fgravity represented by

−−→
PO and (ii) Fcentrifugal represented by−−→

PA =
−−→
OB. The vector addition rule offers us:

−−→
PB =

−−→
PO +

−−→
OB ,

|−−→PB|2 = |−−→PO|2 + |−−→OB|2 + 2|−−→PO||−−→OB| cos (π − θ) .

Note that the angle subtended by A and P at O is π − θ though
we have written equivalent of

−−→
PA as

−−→
OB (refer Figure 8). The

expression can be rewritten as:

(mgeff)2 = (mg)2+
(
mω2R cos θ

)2
+2 (mg)

(
mω2R cos θ

)
cos (π − θ) .

Simplifying the above expression, ignoring the terms pertaining

Figure 8. Due to the
spin motion, the gravita-
tional pull mg is deferred by
centrifugal force mω2R cos θ
directed along AP and yields
a resultant mg′ along PB.
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Table 2. Comparative data
for latitude θ and effective
gravity for that place P us-
ing the relationship geff =

g − R (ω cos θ)2.

Place θ geff

P degree
{
m/s2

}
Paris 48.86 9.80495
Shrinagar 34.083 9.79638
New Delhi 28.644 9.79353
Nagpur 21.146 9.79015
Bangalore 12.972 9.78745
Kanyakumari 08.088 9.78642
Sydney -33.865 9.79626

to ω4 (as ω is small in rad/sec), we get expression for effective
gravity as a function of latitude θ:

geff = g

√(
1 − 2R (ω cos θ)2

g

)
.

The binomialThus here, we have
b = iω sin θ = iωP which
is an imaginary quantity

and its derived parameter
will be α =

√
b2 − Ω2 =√

−ω2
P − Ω2 = iβ for

β =
√

(ωP)2 + Ω2. Thus,
the ratio of two

imaginary quantities
b
α
=
ωP

β
makes a real

number.

expansion ignoring powers higher than ω2, we get:

geff = g − R (ω cos θ)2 , (9)

here, g refers to the gravity at Poles, geff is the gravity at the point
where latitude is θ and R refers to the radius of Earth 6400 km.
Table 2 depicts data for few places we are considering for dis-
cussion using (9). Note that on the Equator, effective gravity is
minimum while it symmetrically increases as one travel towards
the Poles. Figure 9 presents the graphical variation of the (9) over
a tour from the South to North Pole via the Equator.

2.4 Pair of Differential Equations Representing the Motion
of FP

The DE for FP obviously offers Newtonian force and Coriolis
force proportional to the displacement. As the plane of oscil-
lation is rotating due to Coriolis force, the parametric displace-
ment x(t), y(t) are cross connected with the velocity components
dy(t)

dt
,

dx(t)
dt

respectively through sin(θ). The XY plane is tangen-
tial to the point where the latitude is being discussed. Thus, the
pair of DE takes the form as depicted in (10) and (11):
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Figure 9. Variation of
gravity g with latitude θ.

m
d2

dt2 x(t) − 2mω sin θ
d
dt

y(t) = −mg
L

x(t) . (10)

m
d2

dt2 y(t) + 2mω sin θ
d
dt

x(t) = −mg
L

x(t) . (11)

For For instance, at zero mile
of Nagpur, we have, (i)
θ = 21.146633o, (ii)
ω = 72.722 × 10−6 rad/s,
(iii) say L = 67 meters
and (iv)
g = 9.790158554 m/s2,
and the derived
quantities (v)
ωP = 26.234918× 10−6,
(vi) xo = 6.7, (vii)
effective gravity
g = 9.790158554, (viii)
Ω =

√
geff/L =

0.3822587730,

β = 0.3822587739,
b
α
=

ωP

β
= 68.631 × 10−6.

compact representation of (10) and (11), we shall explore

short-hand notations/substitutions; d2

dt2 x(t) = ẍ, d2

dt2 y(t) = ÿ,
d
dt

x(t) =

ẋ,
d
dt

y(t) = ẏ,
g
L
= Ω2, z(t) = x(t) + iy(t), ż = ẋ + iẏ and z̈ = ẍ + iÿ.

Thus, we have a pair of DE for FP as:

ẍ = −Ω2x + 2ω sin θẏ,

ÿ = −Ω2y + 2ω sin θ ẋ . (12)

Performing 1st + i × 2nd on the pairs in (12) and exercising little
simplification for b = iωP = iω sin θ, we get a single DE for
complex variable as z:

z̈ + 2bż + Ω2z = 0 . (13)
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Now, we have (13) which is a second order ordinary DE for com-
plex variable. The solution of standard DE (13) takes a form as:

z = exp(λt) . (14)

The parameter λ is to be found and should necessarily satisfy the
DE(13) on substitution of its solution, i.e., (14).

exp(λt)
(
λ2 + 2bλ + Ω2

)
= 0 .

Here, the vanishing of the product of the duo means that either
of the duo is vanishing. However, exp(λt) � 0, otherwise it will
render zero solution which is completely meaningless. There-
fore, the second part must vanish, i.e.,

(
λ2 + 2bλ + Ω2

)
= 0. This

quadratic equation imposes two roots of λ:

λ = −b ±
√

b2 −Ω2 = −b ± α . (15)

Here, we shall denote two possible solutions found in (15) as λ1 =

−b+α, and λ2 = −b−α for α =
√

b2 −Ω2, and the unique solution
may be devised as being linearly dependent of both. Thus, we
have,

z(t) = A exp [(−b + α)] t + B exp [(−b − α)t] . (16)

Exploring the boundary conditions (BC) to eliminate constants A
and B, we have to set up initial conditions as – BC1:=At at t = 0
we set oscillations in the XZ-plane, thus x(0) = xo, y(0) = 0 ⇒
z(0) = xo, BC2:=At t = 0 when we set oscillations in the XZ-
plane. Thus ẋ(0) = 0, ẏ(0) = 0 ⇒ z(0) = 0. Substituting BC in
the solution which is (16), we get;

A + B = xo, A(−b + α) + B(−b − α) = 0 .

The above pair of equations can be solved for the pair of constants
A and B to obtain these constants:
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A =
xo

2

(
1 − b
α

)
, B =

xo

2

(
1 +

b
α

)
. (17)

Thus, substituting A and B from (17) in the solution (16) and
simplifying, we get the final solution as (18) of the DE of FP as
following:

z(t) =
xo

2
e−bt

{(
1 +

b
α

)
eαt +

(
1 − b
α

)
e−αt

}
,

z(t) = xoe−bt
{(

eiβt + e−iβt

2

)
+ i

b
α

(
eiβt − e−iβt

2i

)}
. (18)

3. Exploring MAPLE18

Here, the constant b being imaginary, we have the following iden-
tity to be substituted in the last equation:

e−bt = e−i(ωP)t = cos(ωPt) − i sin(ωPt) ,

b
α
=
ωP

β
=

ω sinθ√
(ω sin θ)2 + Ω2

,

eiβt + e−iβt

2
= cos βt,

eiβt − e−iβt

2i
= sin βt ,

The complex quantity z(t) in (18) possess a real part x(t) and an
imaginary part y(t) which on comparison with the Re {RHS (eq (18))}
and Im {RHS (eq (18))} with a few bits of simplifications offer us
desired solution that we are looking for are the solutions of pair
of DE of FP as (10) and (11) are:

x(t) = xo

{
cos (ωPt) cos (βt) +

ωP

β
sin (ωPt) sin (βt)

}
. (19)

y(t) = xo

{
ωP

β
cos (ωPt) sin (βt) − sin (ωPt) cos (βt)

}
. (20)
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Unfolding all the notations which we have inducted for the con-
venience, we shall now call back the expanded form of the pair of
solutions.

x(t) = xo cos[(ω sin θ)t] cos
(
t
√

(ω sin θ)2 + Ω2
)
+

xoω sinθ√
(ω sin θ)2 + Ω2

sin[(ω sin θ)t] sin
(
t
√

(ω sin θ)2 + Ω2
)
. (21)

y(t) =
xoω sinθ√

(ω sin θ)2 + Ω2
cos[(ω sin θ)t] sin

(
t
√

(ω sin θ)2 + Ω2
)

− sin[(ω sin θ)t] cos
(
t
√

(ω sin θ)2 + Ω2
)
. (22)

Now, worldly parameters for the place are to inducted in (21) and
(22) where the FP is to be build or theoretically estimated for its
parameters, derived parameters and displacement. On submission
of these parameters, one obviously desires to plot the instanta-
neous displacements in terms of x(t), y(t) after substituting them
in (21) and (22). Table 2 depicts the concerned data for a few
places.

MAPLE is a symbolic and numeric computing environment and
is also a multi-paradigm programming language. Developed by
Maplesoft, it also covers other aspects of technical computing,
including visualization, data analysis, matrix computation, and
connectivity.

We have displacement along x and y which are functions of time
being represented by long equations (24) and (25). Use of MAPLE
offers a great ease at handling it once written using the proper
syntax. In the next step, we can offer substitutions for the place
where we want to install the FP, say, for Nagpur. We offer all
substitutions to generate the same equation for numerical values.
Note that we are processing calculations for time in minutes (not
in seconds) so that the plots for 66.52 hrs should not get masked
on time scale. The MAPLE syntax follows:
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restart;

with(plots) :

φ := eval f (21.146633 ∗ Pi ∗ (1/180)); g := 9.79015;

L := 67; x[0] := 6.7;Ω := eval f (2 ∗ Pi/(24 ∗ 60));

ω := sqrt(g/l); b := I ∗Ω ∗ sin(φ); abs(b) :

beta := sqrt(ω2 + (Ω ∗ sin(φ))2) :

x(t) := 6.9(cos(βt) cos(|b|t) − (|b|)/(β) sin(βt) sin(|b|t));
y(t) := −6.9 ∗ (cos(β ∗ t) ∗ sin(|b| ∗ t) + (|b|)/(β) sin(β ∗ t) ∗ cos(|b| ∗ t));

assign(S oln);

eval f ([x(t), y(t)])

Here, MAPLE18 generates output as following.

x(t) = 6.9 cos(0.382261t) cos(0.001574t)

−0.028413 sin(0.382261t) sin(0.001574t)

y(t) = −6.9 cos(0.382261t) sin(0.001574t)

−0.028413 sin(0.382261t) cos(0.001574t)

plot([x(t), y(t)], t = 0...2000,

color = [red, blue], thickness = 2)

plot([x(t), y(t), t = 0...300])

generates the real-time parametric plot of x(t) versus y(t) when
time in minutes freely run for 5 hrs which is displayed in Figure
10.

Now, the execution of following simple one line animation com-
mand in Maple generates an amazing real-time out put depicted
in Figure 11. The geometry of the trajectory resembles the work
of J Opera [6]. This output is similar to the sand-plot generated by
the FP with a pin beneath the bob rolling on the sand as depicted
in Figure 12.
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Figure 10. Plot of x(t)
and y(t) versus time (in min-
utes) from (21) (22) for the
latitude of Nagpur describ-
ing one complete rotation of
the plane of oscillation of FP
which is described in 66.52
hrs.

Figure 11. The real-time
300 min run describing the
animation plot for the para-
metric equations of x(t) ver-
sus y(t). This resembles the
work of J Opera [6] on ge-
ometry aspects of FP.

3. Conclusions

This experiment offers an exact evidence of the spin motion of
Earth, in turn revealing a technical and precise information that
the Earth’s surface is not an inertial frame of reference. The cal-
culation worksheet may be filled with just the latitude informa-
tion for the calculation of all the parameters, plot, and anima-
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Figure 12. Exemplar
sandplot photo. Courtesy:
global.rakuten.com

tion. Students may plan a model/project with suitable/feasible
pendulum specifications (especially mass and string length). In a
short time, fine and precise calculations, plots, and animations are
catered by MAPLE can be boost the effective design of the actual
model/project. Miniature table top models of FP are also feasible
projects for science exhibitions. Toying with various parameters
in the MAPLE animation programme offers a matchless learning
experience.
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