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Abstract. The space-time warp suggested by Einstein[1] has been molded into imaginary and real-part to raise
an event. This weaving offers invariant quantity on squaring the complex number. In complex numbers context the
Lagrangian remains same as in the relativistic mechanics but offers complex Hamiltonian. Here we show up that
this manifestation offer additional information in every equation.
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1. Introduction

Hypotheses that the time is real and space is imaginary
offers the complex number representation of space-time
event and its square by following equation.

z = ct + i r, z2 = s2 + i w2 (1)

The Re
{
z2

}
= c2t2 − r2 = s2 is identified with the

interval from special relativity while we encounter
with a new quantity Im

{
z2

}
= 2ctr = w2 which is also

invariant quantity deferred in representation. For veloc-
ity of light being absolute constant [2] and now c = 1,
t2 − r2 = s2 represents hyperbola in t-r plane inter-
secting real-time axis at s while 2tr = w2 also repre-
sents a hyperbola which is tilted by 45o (counterclock-
wise). This orients the rectangular composition of real-
time axis to the one obtained by anti-clockwise rota-
tion by π/4, that is, a pair of light-like orthogonal lines
lines. Mathematically, we represent light-like orthogo-
nal lines as T : t−r = 0 and R : t+r = 0 giving us TR =

s2 which is like 2rt = w2. If we retain meanings of the
time and the space over counterclockwise π/4 rotation,
we have a important relation; w = s. Fig. 1 presents
grid-lines formed by t = 0,±1,±2, ..., r = 0,±1,±2, ...,
t2 − r2 = 0,±1,±2, ... and 2tr = 0,±1,±2, .... A ref-
erence circle is also drawn to indicate that the vertex
of the hyperbole is preserved over rotation. It is ob-
vious that here we have additional bunch of informa-

tion apart from the ”interval” of Special Relativity.
Here, we are at an advantage of having a deferred form
of interval which is twice the area of square(light-
like)/rectangle(space-like or time-like) in s-w argand
plane and as expected remains invariant like interval
under Lorentz Transformation. Thus, the new version
of invariant equation opens possibility of offering ad-
ditional information. Note that here we differ with the
idea mentioned by Carbajal wherein ”time” is consid-
ered as a imaginary quantity[3]. Similarly an offbeat
reporting is also found in the literature where speed of
light is treated imaginary by Mehran Rezaei[4].

To set-up proof of area invariance in s-w argand
plane consider an inertial observer S’ moving with ve-
locity v. The complex event z and its square z′2 is rep-
resented by equation (2).

z′ = ct′ + i r′, z′2 = s′2 + i w′2 (2)

Fig. 2 depicts the grid-lines for unit intervals on real
(t = 0,±1,±2, ...) and imaginary (r = 0,±1,±2, ...) axis
for c = 1 in frame S. In the same diagram we also plot
grid-lines for unit intervals on real (t′ = 0,±1,±2, ...)
and imaginary (r′ = 0,±1,±2, ...) in frame S’ explor-
ing Lorentz transformation equations; ct′ = γ (ct − βr)
and r′ = γ (r − βct). This picture reveals deformation
(stretching/squeezing) of diagonals from square grid into
rhombus having acute angle θ and obtuse angle π − θ
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Figure 1. Plot of grid lines formed by t = 0,±1,±2, ..., r =

0,±1,±2, ..., t2 − r2 = 0,±1,±2, ... and 2tr = 0,±1,±2, ... along
with light-like lines r = ±t, circles of radius showing vertices of all
hyperbolas.

as shown in Fig. 2. Here, the speed v of inertial ob-
server S ′ determines variation in angular compression
from π/2 (between real-imaginary axis in frame S) to
the acute angle θ betwen t′ and r′ in frame S’ governed
by equation (3).

θ = tan−1
(
1 − v2

2v

)
(3)

The most interesting point here is that the area bound
by each unit cells is invariant (obviously unity for ob-
server in frame S and S’). Note that the observer in S
finds the stretched argand plane of moving frame show-
ing up grid lines forming rhombus but its area is unity,
that is, t′r′ sin θ = 1. We shall identify this in terms of
deforming factor α = sin θ. Note that, the generalized
invariance of area is governed by equation tr sin π/2 =

t′r′ sin θ.
Thus, we have invariant unit-cell area (deformed

shape) in addition to the interval from the special
theory of relativity is a new bit of information. Note
that c2t2

s2 −
r2

s2 = 1 is an equilateral hyperbola for c =

1 with eccentricity e =
√

2 and focus
(
±s
√

2, 0
)

and

a pair of directrix d = ±s/
√

2. The quantity w =
√

2ctr = t
√

2 = r
√

2 for light-like (t = r) square for
c = 1 represents diagonal of the square. On the other
hand for time-like interval c2t2 > r2 the involved ve-
locity v of the object is less than c and is given by
v = r/t. Therefore, for time-like interval the quantity

Figure 2. Grid in Frame S governed by lines t = 0, 1, 2, 3, 4 and r =

0, 1, 2, 3, 4 along with hyperbole t′2 − r′2 = 0, 1, 4, 9, 2tr = 0, 1, 4, 9
and 2t′r′ = 1, 4, 9 for (a) v = 0 (b) v = 0.1 (c) v = 0.4 (d) v = 0.6
(e) v = 0.7 (f) v = 0.5; grid lines in frame S and S for t′ = 0, 1,
t = 0, 1 and r′ = 0, 1, r = 0, 1 along with overlapping pair of light-
lines r = t and r′ = t′ exhibiting invariant unit are in space-time
continuum.

w =
√

2ctr = ct
√

2β = t
√

2v. From this discussion it is
obvious that w grows at rate

√
2v for time-like/space-

like and
√

2 for light-like.
The invariance of interval in two forms thus can be

governed by following equation.

dw′2 sin θ = dw2, ds′2 = ds2 (4)

Fig. 3 presents variation of θ (v), α(v) and d
dvα(v)

with velocity v of the inertial observer over the possi-
ble range 0 ≤ v ≤ +1. Here, we have mathematical
versions as equation (3) and (5).

α (v) = sin θ =
1 − v2

v

√
4 +

(1−v2)2

v2

,
d
dv
α (v) = −

4v
1 + v2 (5)
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Figure 3. Variation of (i) θ (ii) α = sin θ and (iii) dα/dv with veloc-
ity under scaling constrain c = 1.

Curve analysis in MAPLE 18 for function α (v) of-
fers information as following: (i) the factor α posses lo-
cal minima at v = 1, (ii) there are no increasing interval,
(iii) function is decreasing over entire interval [0, 1] (iv)
the function is concave down over interval [0, 0.577],
and concave up over interval [0.577, 1] (v) the inflation
point is interval [0.577, 0.502] at which γ = 1.22437.

Similar analysis for the function d
dvα (v): (i) it pos-

sess local minima at [0.577,−1.299037747] , (ii) it is
decreasing over interval [0, 0.577] and increasing there-
after over interval [0.577, 1] (iv) the function is con-
cave up over interval [0, 1] no inflation point. How-
ever, the variation of θ following equation (3) indicates
that θ contentiously decreases with velocity over inter-
val [0, 1], without inflation. The inflation occurring re-
flects in dθ

dv also at v = 0.577.
To define proper time, we shall fix clock to the ori-

gin (r′ = 0) of frame S ′ to get rid of the term Im
{
z′2

}
.

This attempt formulates legacy to define proper time.
Using notation τ = t′ for the ”proper time” and β =

dr/cdt = v/c becomes following;

dt
dτ

=
1√

1 − β2
= γ (6)

As the quantity proper time beholds universality that
all inertial observers agree upon, we shall differentiate
the complex event w.r.t. τ and explore chain rule to re-
late with our usual parameters like velocity, momentum
and acceleration.

Moreover, the term α can also be expressed as;

α = sin θ =

(
dw
dw′

)2

=
drdt

dr′dt′
= γ

dr
dr′

(7)

2. Proper complex velocity v

is defined as the proper time rate of change of the com-
plex position z. Mathematically, v = dz/dτ = z̆ and
dz/dt = ż and chain rule offers; z̆ = γż

v = z̆ = γż = γ (c + i ṙ) (8)

Here, ṙ = u is usual velocity in frame S. The square
conformal[5] mapping of complex proper velocity will
be;

v2 = γ2
(
c2 − ṙ2 + i 2cṙ

)
(9)

In case the velocity involved ṙ = u = v i.e. the
object is stationary in frame S’, the above equation re-
duces to;

v2 = c2 + i 2cvγ2 (10)

3. The Lorentz Transformation using Complex Num-
ber

The Lorentz Transformation[6] (LT) equations with all
usual meanings are; ct′ = γ (ct − βr) and r′ = γ (r − βct)
now can be expressed by the following unique equation.

z′ = γ
(
z − i βz

)
(11)

here, z is complex conjugate[5] of z while z′ repre-
sents the complex number representation of an event in
another inertial frame S’ moving with velocity v w.r.t.
frame S. Moreover, the inverse Lorentz Transformation
can be expressed as; z = γ

(
z′ + i βz′

)
4. Velocity Composition in s-w argand plane

An event chart in frame S and S’ can be expressed as
depicted in equation (1) and (2). Differentiating equa-
tions (1) and (2) with respect to t and τ (exploring chain
rule using equation (6)) we get velocity in respective
frames in complex number form. The complex veloc-
ity and proper complex velocity can be expressed as;
ż = c + i ṙ,z̆ = γ (c + i ṙ)

Under inverse Lorentz Transformation, the event dz
from equation (11) divided by dt = γdτ offers velocity
relation between two frames.
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dz
dt

= γ2
(
dz′

dτ
+ i β

dz̄′

dτ

)
(12)

Simplifying above equation and using our short-
hand notations/equations u = ṙ, u′ = dr′/dτ, γ =

(
1 − β2

)−0.5

and comparing real & imaginary parts we get a pair of
relations;

γ2 =
c

c + βu
, u′ = γ2 (u + v) (13)

Combining above pair of equations, we get the same
expression for velocity composition as in special rela-
tivity;

u′ =
u + v
1 + uv

c2

(14)

Thus, we smoothly validates velocity composition
rule of special relativity.

4.1 Proper complex velocities v, v′

and the Lorentz Transformation will enable us with a
new bunch of information to explore. We have z̆ =

γ (c + i ṙ) and z̆′ = γ d
dt

(
z − i βz

)
representing the ve-

locity. The square conformal mapping of this pair is
invariant for (ṙ = v, r̆′ = v′) as;

c2 − v′2 = γ2
(
c2 − v2

)
, γ2v = v′ sin θ (15)

In the above pair of equations, the first equation rep-
resents v′ = 0 which means that a stationary particle in
S’ and its velocity is v in S. However, the later equa-
tion in additional information emerging out where the
angle θ = sin−1

(
γ2 v

v′

)
is angle subtended by t′ and r′

axis which resembles equation (7). The Lorentz trans-
formation equation for the complex proper velocity will
be;

z̆′ = γ
(
ż − i βż

)
, z̆ = γ

(
ż′ + i βż

′)
(16)

4.2 Proper complex momentum p

is defined as the product of proper mass mo and proper
complex velocity v. Mathematically, p = mov = moz̆.

p = moγ (c + i ṙ) (17)

Using pre-hand information; mc = E/c along with
relativistic momentum p = mṙ for m = moγ;

p =
E
c

+ i p (18)

The square conformal mapping of complex proper
momentum using equation (20) and (21) we get;

p2 = m2
oc2 + i 2m2vc =

E2

c2 − p2 + i 2
Ep
c

(19)

Comparing the real and imaginary part, we get a
pair of equations;

E =

√
m2

oc4 + p2c2, E = mc2 (20)

Thus, we have two famous relativistic equations stat-
ing energy of the particle. Moreover, the Lorentz trans-
formation equation for complex proper momentum will
be;

p′ = γ
(
p − i βp

)
,p = γ

(
p′ + i βp′

)
(21)

4.3 Proper complex acceleration a

is defined as the proper time rate of change of the com-
plex velocity v. Mathematically, a = dv/dτ along with
usual notation a = v̇ and inter-relations γ̇ =

vaγ3

c2 , 1 +

β2 = γ2 we have;

a = γ
d
dt
γ (c + iv) = cγγ̇ + i

(
γ2v̇ + γγ̇v

)
= aγ4 (β + i)

(22)

The square conformal mapping of complex proper
acceleration will be;

a2 = −a2γ6 + i 2βa2γ8 (23)

The Lorentz transformation for proper complex ac-
celeration can be obtained by dividing equation (18) for
velocity transformation by dτ = γ−1dt as;

a′ = γ3
(
a − i βȧ

)
(24)
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5. The Lagrangian L

can be found from the action integral in reference to the
complex number representation of the event as;

S = −α

∫ b

a
dz = −α

∫ b

a

√
ds2 + i dw2 (25)

Here, we have pair of complex invariant intervals
as; dz2 = c2dt2 − dr2 + i 2cdrdt sin π/2 and similarly,
dz′2 = c2dt′2−dr′2 + i 2cdr′dt′ sin θ obeying invariance
governed by; dz′2 = dz2. Fixing moving object to the
origin of frame S’ we have dr′ = 0, reduces invariant
pairs of equations to ds = cdt′ = cγ−1dt and dw = 0
which simplifies the action to the traditional one in the
relativistic mechanics.

S = −

∫ b

a
αcγ−1dt (26)

Consequently the Lagrangian of the particle will
also be unaltered.

L = −αc

√
1 −

v2

c2 (27)

It obviously follows from the relativistic mechanics[6]
that α characterizes particle and the limiting conditions
formulates α = moc for free particle. Thus, our La-
grangian (being free from imaginary-part) also resem-
bles completely with the traditional.

L = −moc2

√
1 −

v2

c2 (28)

6. Energy and momentum

Let us workout ∂L/∂v for the Lagrangian and proper
complex velocity from equation (30) and (27) respec-
tively.

∂L
∂v

=
∂L
∂v

∂v
∂v

(29)

The quantity ∂L/∂v = moγv = mv = poγ is rela-
tivistic momentum. However, the quantity ∂v/∂v needs
to be evaluated and analyzed. For convenience, let us
first find out ∂v/∂v instead.

Figure 4. Variation of (a) Γ and γ (b) 1/Γ and 1/γ with β, i.e. ve-
locity under scaling constrain c = 1.

∂v
∂v

=
∂

∂v
c + i v√

1 − v2

c2

= βγ3 + i γ
(
1 + β2γ2

)
(30)

∂v
∂v

= γ3 (β + i)⇒
∂v
∂v

=
(β − i)

γ3 (
1 + β2) (31)

Thus,

∂L
∂v

= poΓ−1 (β − i) (32)

for shorthand notation Γ =
1+β2

1−β2 . Moreover, it is worth
mentioning that the γ and Γ almost behave similar. The
Fig. 4a depicts that the γ follows Γ over entire range of
β. The dis-contentious functions can be looked in an
interesting way as γ−1 and Γ−1 which is also depicted
in the Fig. 4b .

It is worth noting that the proper complex momen-
tum is very close to the momentum defined from the
mechanics by differentiating the Lagrangian with re-
spect to the proper complex velocity[6]. Thus, here we
have a very important finding of the present work as
p ≈ ∂L

∂v .

7. The Hamiltonian

The quantity pv − L forms energy equation which also
offers complex Hamiltonian of the form;

E = pv − L = moc2
[(

1 − γ−1
)

+ i 2γ2β
]

= H (33)

The Re {E} = 1
2 mov2 represents Newtonian kinetic

energy under limiting condition β→ 0. While Im {E} =
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2moc2βγ2 vanishes under limiting condition β → 0.
This offers smooth return to the Newtonian theory for
low speeds for which we have started from the action
is S = −moc

∫ b
a dz and the Principle of Least action

δS = 0.

8. Discussion and Conclusion

The time-space warp suggested by Einstein in 1905 has
been put forth in present work as a real part and imag-
inary part to form complex number representation of
an event. Special Relativity suggests that space-time
interval of the format s =

√
t2 − r2 remains invariant

unlike
√

t2 + r2 in the circular geometry, over rotation
of coordinate axis about z-axis. Now, the real part of
the square conformal mapping of an event offers invari-
ant interval like in Special Relativity. However, this
work also offers a finding that the imaginary part too
sublimes an invariant quantity in deferred form. This
new quantity is attributed to invariant area in space-
time continuum of argand plane over Lorentz Transfor-
mation. The idea of exploring complex number repre-
sentation of an event in special relativity with the hy-
pothesis that time is real and space is imaginary is
found to progress smoothly like 4-vectors[6] treatment
and efficiently offers an additional novel information
from its imaginary counterpart. One of the important
findings is inflation of the rate at which the deform-
ing factor α varies with the relative velocity v at v =

0.577c. Moreover, the proposal of hypothesis that time
is real and space is imaginary is supported as the new
quantity z2 is invariant over Lorentz Transformation.
Nevertheless, both entities (Re

{
z2

}
, Im

{
z2

}
) are hyper-

bole of the same family except rotation (by π/4) and
squeezing by θ governed by the relative velocity in-
volved. This quantity encompasses the Einstein’s con-
tention of space-time interval while rendering an ad-
ditional invariant quantity that possess dimensions of
space-time area. The established Lorentz Transforma-
tion equations are replaced by a single elegant equa-
tion and the other counter parts like; velocity compo-
sition; time dilation; space contraction and relativistic
Lagrangian etc are encompassed without loss. More-
over, the present work proposes new Hamiltonian in
complex form. One of the important features of the
present work is that; the proper complex momentum
is very close to the momentum defined from the me-
chanics obtained by differentiating the Lagrangian with
respect to the proper complex velocity and the new rel-
ativistic complex Hamiltonian smoothly rolls back to
the classical Hamiltonian representing kinetic energy.
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