

Shri Shivaji Education Society, Amravati's Science College

Congress Nagar, Nagpur-12 (M.S.), India

Accredited with CGPA of 3.51 at 8A+9 grade by NAAC, Bangalore A <College with Potential for Excellence= identified by UGC New Delhi. Institutional Member of APQN Recognized Centre for Higher Learning and Research Mentor College under 8PARAMARSH Scheme9, UGC, New Delhi

SSES Amravati's Science College, Congress Nagar, Nagpur-12

DEPARTMENT OF PHYSICS

Session 2023-2024

<u>Course Title</u>: Certificate Course on Physics behind Green Synthesis of Nanoparticles from Medicinal Leaves

Duration – 30 Hours (10 Weeks)

Course Start from 1 Aug2023 to7 Oct. 2023

Course Coordinator: Dr. S. V. Khangar

Shri Shivaji Education Society Amaravati's Science College Congress Nagar, Nagpur Department of Physics

Course Report on Add-on Course

"Certificate Course on Physics behind Green Synthesis of Nanoparticles from Medicinal Leaves"

Undergraduate Course for Physics Students

Duration: 01/08/2023 to 07/10/2023

Total Students: 78

This 10-week add-on course provided B.Sc. Physics students with a comprehensive understanding of the Certificate Course on Physics behind Green Synthesis of Nanoparticles from Medicinal Leaves. The course was conducted by Dr.S. V. Khangar, Assistant Professor, Department of Physics SSES Amt's Science College Congress Nagar Nagpur. Total 78 Students of B.Sc. I, II and III, year Physics were enrolled for the course.

This course provided UG students with a comprehensive understanding of the fundamental physics principles underlying the green synthesis of nanoparticles from medicinal leaves. It also emphasizing hands-on experience and real-world applications. This course equipped students with a deep understanding of the physics behind the green synthesis of nanoparticles from medicinal leaves, empowering them to contribute to cutting-edge research and development in nanotechnology with a focus on sustainability and environmental responsibility. The students were evaluated through MCQ based final exam of 60 marks and practical lab sessions and hands on sessions of 40 marks. All 78 students successfully completed the course, with a majority achieving high grades. Several students demonstrated exceptional skills in practical applications and their innovative ideas during hands on experience. Students worked on individual and group projects that involved synthesis and characterization techniques.

The 10-week Certificate Course on Physics behind Green Synthesis of Nanoparticles from Medicinal Leaves was a valuable addition to the undergraduate physics curriculum, equipping students with essential knowledge and skills in synthesis and characterization techniques. The course successfully combined theoretical knowledge with hands-on experiences, the students delve into the quantum mechanics, optics, and thermodynamics involved in the synthesis, characterization, and applications of nanoparticles using green method.

Super Goodinator

To, The Principal SSES Amt's Science College, Congress Nagar, Nagpur-12

.

Subject: For permission to conduct the add on courses in Physics during the session 2023-2024

Respected Sir.

÷.

This is to request you that, the teachers of Physics department have prepared the syllabus and modules of the 30 hours certificate courses for the session 2023-2024.

The details of the course module, syllabus and time table is submitted here with.

Hence please permit to run the add on courses and oblige me.

Thanking you

Yours sincerely

Dr. S. W. Anwane Professor and Head Department of Physics Shri Shivaji Education Society Amravati's SCIENCE COLLEGE Congress Nagar, Nagpur

Permitted pohore

Shri Shivaji Education Society Amravati's

Science College

Congress Nagar, Nagpur

Department of Physics

Add-on Certificate Course (2023-2024)

Certificate Course: Certificate Course on Physics behind Green Synthesis of Nanoparticles from Medicinal Leaves

NOTICE (For UG)

Date: 15/07/2023

All the B. Sc. First year, Second Year and Final Year students of the department of Physics are hereby informed that the Physics department commencing a certificate course on "<u>Certificate</u> <u>Course on Physics behind Green Synthesis of Nanoparticles from Medicinal Leaves</u>" from 01/08/2023-07/10/2023. The course registration will start from 20/07/2023 to 31/07/2023. Interested students contact to course coordinator for registration.

Note: It is free registration

Course coordinator: Dr. Sugandha V. Khangar Contact Number: 9975768840

Course Coordinator

Dr. Sugandha V. Khangar

Shri Shivaji Education Society Amravati's

Science College

Congress Nagar, Nagpur

Department of Physics

Add-on Certificate Course (2023-2024)

Certificate Course: <u>Certificate Course on Physics behind Green Synthesis</u> of Nanoparticles from Medicinal Leaves

NOTICE (For UG)

Date: 27/07/2023

All the registered students of the department of Physics are hereby informed that the Physics department commencing a certificate course on "<u>Certificate Course on Physics behind</u> <u>Green Synthesis of Nanoparticles from Medicinal Leaves</u>" from 01/08/2023-07/10/2023. The registered students are requested to do the regular classes and practical as per the scheduled timetable.

For any query contact to course coordinator.

Course coordinator: Dr. Sugandha V. Khangar Contact Number: 9975768840

Time Table

Day	Theory	Room No.
Friday	SVK (C4) Theory 4.00 PM - 5.00 PM	C8
Saturday	SKS (C4) Theory, 4.00 PM – 5.00 PM	C8
	SVK (Phy Lab) practical, 5.00 PM – 6.00 PM	Physics Research Lab

Course coordinator

Dr. Sugandha V. Khangar

<u>Certificate Course on Phy</u> <u>Nanoparticles fro</u>	sics behind Green Synthesis of om Medicinal Leaves
	Free Certificate Course for College Students Duration: 30 Hours (10 Weeks) Course Duration: 01/08/2023-07/10/2023 Frequency: Weekly sessions (2-3 hours each) Process of Registration: Early birds will be admitted first. Registration Date: 20/07/2023 to 31/07/2023 Exam: 18/10/2023
 Course Objectives: Understanding the Quantum Mechanical Basis Exploration of Optoelectronic Properties Mastery of Spectroscopic Analysis Techniques Expertise in Microscopic Imaging Investigation of Nanoparticle Dynamics Evaluation of Physical Properties Department of Physics Shri Shivaji Education society Amravati's, Science college Congress Nagar, Nagpur – 140012 	Course Overview: This course will equip participants with a deep understanding of the physics behind the green synthesis of nanoparticles from medicinal leaves, empowering them to contribute to cutting-edge research and development in nanotechnology with a focus on sustainability and environmental responsibility. It also provides participants with a comprehensive understanding of the fundamental physics principles underlying the green synthesis of nanoparticles from medicinal leaves. Participants will delve into the quantum mechanics, optics, and thermodynamics involved in the synthesis, characterization, and applications of nanoparticles using green methods

Session 2023-2024

all A

Dr. S. V. Khangar Assistant Professor Department of Physics "hivaji Education Society Amravati's Science College "ggress Nagar, Nagpur-410002.

SSES Amravati's Science College, Congress Nagar, Nagpur-440012

DEPARTMENT OF Physics

COURSE MODULE AND SYLLABUS

Course Title: <u>Certificate Course on Physics behind Green Synthesis of</u> <u>Nanoparticles from Medicinal Leaves</u>

Course Coordinator: Dr. Sugandha V. Khangar

Course modules:

1. Introduction to Nanoparticles and Green Synthesis

- Overview of nanoparticles and their significance
- Principles of green synthesis and its importance in sustainability
- Role of physics in guiding green synthesis techniques

2. Quantum Mechanics and Nanoparticle Synthesis

- Basics of quantum mechanics relevant to nanoparticle synthesis
- Quantum confinement effects and size-dependent properties
- Electron transfer processes in green synthesis methods

3. Optical Properties of Nanoparticles

- Plasmon resonance and its role in nanoparticle optical properties
- Quantum dots and their applications in optoelectronics
- Spectroscopic techniques for analyzing nanoparticle optical properties

4. Microscopic Imaging of Nanoparticles

- Principles of transmission electron microscopy (TEM) and scanning electron microscopy (SEM)
- Atomic force microscopy (AFM) for nanoscale imaging and characterization
- Understanding nanoparticle morphology and structure using microscopy

5. Thermodynamics and Nanoparticle Stability

• Thermodynamic aspects of nanoparticle formation and stability

- Gibbs free energy and surface energy considerations
- Strategies for controlling nanoparticle size and stability in green synthesis.

6. Nanoparticle-Biomolecule Interactions

- Physics of nanoparticle interactions with biomolecules
- Drug delivery mechanisms and cellular uptake dynamics
- Applications of nanoparticles in biophysics and medical physics

7. Advanced Characterization Techniques

- Fourier-transform infrared spectroscopy (FTIR) for molecular analysis
- Raman spectroscopy for probing molecular vibrations
- Dynamic light scattering (DLS) for nanoparticle size and zeta potential measurements

8. Applications and Future Perspectives

- Current applications of green-synthesized nanoparticles in physics-related fields
- Emerging trends and future directions in green nanotechnology
- Ethical and sustainability considerations in nanoparticle research and development

Course Objectives:

- 1) Understanding the Quantum Mechanical Basis
- 2) Exploration of Optoelectronic Properties
- 3) Mastery of Spectroscopic Analysis Techniques
- 4) Expertise in Microscopic Imaging
- 5) Investigation of Nanoparticle Dynamics
- 6) Evaluation of Physical Properties

Instructional Strategies: Theory class, Practical, Video clips, Models etc.

Evaluation Strategies: Oral discussions and Final MCQ examination.

Course Outcomes (COs):

- 1. **Application of Quantum Mechanics**: Apply quantum mechanical principles to predict and explain the optical, electronic, and magnetic properties of nanoparticles synthesized from medicinal leaves, enabling the design of nanomaterials with tailored properties.
- 2. **Proficiency in Spectroscopic and Microscopic Analysis**: Demonstrate expertise in using spectroscopic and microscopic techniques to characterize the structural and optical properties of nanoparticles, interpreting experimental data through a physics lens.
- 3. **Skills in Nanoparticle Synthesis and Characterization**: Acquire practical skills in synthesizing nanoparticles using green methods and characterizing them using advanced instrumentation, preparing for research and industrial applications in nanotechnology.
- 4. **Understanding of Nanoparticle-Biomolecule Interactions**: Gain insights into the physics of nanoparticle-biomolecule interactions, elucidating mechanisms of drug delivery, cellular uptake, and biomolecular sensing for biomedical and biophysical applications.
- 5. **Critical Thinking and Problem-Solving Abilities**: Develop critical thinking skills and problem-solving abilities by applying physics principles to address interdisciplinary challenges in green nanotechnology, fostering innovation and sustainability.

Duration of course: Ten weeks (30 Hours)

Target Audience:

- Physics undergraduates interested in nanotechnology
- Researchers also seeking to deepen their understanding of green synthesis techniques from a physics perspectives.

Prerequisites:

- Basic knowledge of quantum mechanics and optics
- Familiarity with laboratory techniques (preferred and mandatory)

Certification:

Participants who successfully complete the course requirements, MCQ type theory exam and a practical, will receive a certificate of completion highlighting their understanding of the physics behind green synthesis of nanoparticles from medicinal leaves.

Course	Theory Papers and Practical	Total Marks	
		Theory	Project/ Practical
Certificate Course on Physics behind Green Synthesis of Nanoparticles from Medicinal	Theory paper- Physics behind Green Synthesis of Nanoparticles from Medicinal Leaves * Theory examination will be of MCQ pattern having 60 questions each with equal marks.	60	40
Leaves	* Practical examination will be based on performance evaluation in the laboratory	100000 (10000 (1000) /	

The Structure of Syllabus and system of evaluation -

letonger Coordinator

Motione

Principal S. S. E. S. Amravati's Science College, Nappur.

Internal Quality Assurance Cell (IQAC) S. S. E. S. A. Science College Congress Nagar, Nagpur.

SYLLABUS

Certificate course (10 weeks) (Certificate Course on Physics behind Green Synthesis of Nanoparticles from Medicinal Leaves)

Theory-

UNIT-I

Introduction to Nanoparticles and Freen Synthesis: Overview of nanoparticles and their significance, Principles of green synthesis and its importance in sustainability, Role of physics in guiding green synthesis techniques.

Quantum Mechanics and Nanoparticle Synthesis: Basics of quantum mechanics relevant to nanoparticle synthesis, Quantum confinement effects and size-dependent properties, Electron transfer processes in green synthesis methods

Unit-II

Optical Properties of Nanoparticles: Plasmon resonance and its role in nanoparticle optical properties, Quantum dots and their applications in optoelectronics, Spectroscopic techniques for analyzing nanoparticle optical properties

Microscopic Imaging of Nanoparticles: Principles of transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Atomic force microscopy (AFM) for nanoscale imaging characterization, and understanding nanoparticle morphology and structure using microscopy.

Unit III

Thermodynamics and Nanoparticle Stability: Thermodynamic aspects of nanoparticle formation and stability, Gibbs free energy and surface energy considerations, Strategies for controlling nanoparticle size and stability in green synthesis.

Nanoparticle-Biomolecule

Interactions: Physics of nanoparticle interactions with biomolecules, Drug delivery mechanisms and cellular uptake dynamics, Applications of nanoparticles in biophysics and medical physics

Unit IV:

Advanced Characterization **Techniques:** Fourier-transform infrared spectroscopy (FTIR) for molecular analysis, Raman spectroscopy for probing molecular vibrations, Dynamic light scattering (DLS) for nanoparticle size and zeta potential measurements.

Applications and Future Perspectives: Current applications of green-synthesized nanoparticles in physics-related fields, Emerging trends future directions in and green nanotechnology, Ethical and sustainability considerations in nanoparticle research and development.

Practical / Project Work and Assessment

- Hands-on practical work involving the synthesis and characterization of nanoparticles from medicinal leaves.
- Attendance

Distribution of marks: -

1. Hands on Practical work -	30 M
2. Attendance -	10 M

Week-wise Teaching Plan

Week	Hrs.	Syllabus	
Week 1	3	Overview of nanoparticles and their significance, Principles of green ynthesis and its importance in sustainability, Practical	
Week 2	3	Role of physics in guiding green synthesis techniques. Basics of quantum mechanics relevant to nanoparticle synthesis, Practical	
Week 3	3	Quantum confinement effects and size-dependent properties Electron transfer processes in green synthesis methods practical related to synthesis, Practical	
Week 4	3	Plasmon resonance and its role in nanoparticle optical properties, Quantum dots and their applications in optoelectronics, Spectroscopic techniques for analysing nanoparticle optical properties. understanding nanoparticle morphology and structure using microscopy, Practical	

	-	
Week 5	3	Principles of transmission electron microscopy (TEM) and scanning electron microscopy (SEM), Atomic force microscopy (AFM) for
		nanoscale imaging and characterization
		Practical
Week 6	3	
		Thermodynamic aspects of nanoparticle formation and stability, Gibbs
		free energy and surface energy considerations, Strategies for controlling nanoparticle size and stability in green synthesis,
		Practical
Week 7	3	
		Physics of nanoparticle interactions with biomolecules, Drug delivery
		mechanisms and cellular uptake dynamics, Applications of nanoparticles
		in biophysics and medical physics,
		Practical
Week 8	3	
		Fourier-transform infrared spectroscopy (FTIR) for molecular analysis,
		Raman spectroscopy for probing molecular vibrations, Dynamic light
		scattering (DLS) for nanoparticle size and zeta potential measurements.
		Practical
Week 9	3	Current applications of green-synthesized nanoparticles in physics-
		related fields, Emerging trends and future directions in green
		nanotechnology, Ethical and sustainability considerations in nanoparticle
		research and development, Practical- Report preparation
Week 10	3	Report Preparation (T) and Submission- Practical

Week 6	3	Thermodynamic aspects of nanoparticle formation and stability, Gibbs free energy and surface energy considerations, Strategies for controlling nanoparticle size and stability in green synthesis, Practical
Week 7	3	Physics of nanoparticle interactions with biomolecules, Drug delivery mechanisms and cellular uptake dynamics, Applications of nanoparticles in biophysics and medical physics, Practical
Week 8	3	Fourier-transform infrared spectroscopy (FTIR) for molecular analysis, Raman spectroscopy for probing molecular vibrations, Dynamic light scattering (DLS) for nanoparticle size and zeta potential measurements.
Week 9	3	Practical Current applications of green-synthesized nanoparticles in physics- related fields, Emerging trends and future directions in green nanotechnology, Ethical and sustainability considerations in nanoparticle research and development, Practical- Report preparation
Week 10	3	Report Preparation (T) and Submission- Practical

SSES AMT'S SCIENCE COLLEGE, CONGRESS NAGAR, NAGPUR-12 (Certificate Course on Physics behind Green Synthesis of Nanoparticles from Medicinal Leaves)

Time Table

Day	Theory	
Friday	day SVK (C4) Theory 4.00 PM - 5.00 PM	
Saturday	SKS (C4) Theory, 4.00 PM - 5.00 PM	
-	SVK (Phy Lab) practical, 5.00 PM - 6.00 PM	

Course Coordinator

Shri Shivaji Education Society Amravati's Science College, Congress Nagar Nagpur Department of Physics

Certificate course

<u>Title: "Certificate Course on Physics behind Green Synthesis of Nanoparticles</u> from Medicinal Leaves"

Registration Sheet-2023-2024

Course Coordinator: Dr. S. V. Khangar

Sr. No.	Name of Students	Sign	
1	SANGOLE AKANSHA SUBHASH		
2	MARBATE SANSKRUTI RAJENDRA		
3	YADAV SAPNA JAIKRISHNA		
4	CHAUDHARY MUNESH RAVINDRASINGH		
5	SHENDE CHAITRALI GANESHRAO		
6	BAGDE SAKSHI SATISH		
7	BAGDE SHRADDHA BABAN		
8	SINGH NEHA DARA		
9	PARSHURAMKAR GAURAV MANOHAR		
10	DHABEKAR SWATI FATTU		
11	CHOUDHARY DHANSHREE NARENDRA		
12	PAUNIKAR YASHWANT RAJU		
13	AGARKAR PRANJAL VIJAY		
14	LAKHE PRANAV BHUPESH		
15	MOTWANI VARUN DOLAT		
16	JANGADE SANJANA SADANAND		
17	NAYAB NIDHI ARVIND		
18	KENE JANVI SUBHASH		
19	KHAPRE MUSKAN PRAKASH		
20	SHARMA SNEHA RANJAYKUMAR		
21	GANVIR ISHITA HEMANT		
22	KARKI SRUSHTI SUBHASH		

23	MEENA RUCHI MAHENDRA	
24	BEDEKAR TUSHAR VAIBHAV	
25	DHAKATE SAKSHI PRAMOD	
26	PANTAWANE SHREYA SANJAY	
27	BHAGAT SANJIVANI SAGAR	
28	LAKDE SHREYASH MAHADEO	
29	RAUT DISHA VIJAY	
30	LODHIKAR ANJALI NANESHWAR	
31	BALAPURE PARI GAJANAN	
32	BHIWGADE SHRINAY YOGESH	
33	PATLE DEVESH DHURVAJI	
34	KAWALE GAYATRI VINOD	
35	PAROCHE PALAK SATISH	
36	JOSHI SANCHIT MADHUSUDAN	
37	SHINDE NILESH SUNIL	
38	KAYARKAR JANHVI DHIRENDRA	
39	JOSHI ARTI SUBHASH	
40	PATEL LOKESH SHRINIWAS	
40	MASRAM NIKITA SITARAM	
42	MESHRAM NISHANT DUSHYANT	
43	NANNAWARE SAKSHI MURLIDHAR	
44	MISHRA MAHEK PRAMOD	
45	PATRICK SUMIT PASKAL	
45	ZADE GAURI MUKESH	
	CHANDANKHEDE RACHANA VINESH	
47	KANOJE KHUSHI SANJAY	
48	JADHAV AASTHA SANJU	
49	BHAGAT KRUNAL GAJANAN	
50		
51	PITALE SHRIVATSA PRASHANT	
52	JAYSWAL ABHISHEK SANJAY PRASAD	
53	MANKAR MRUNMAYI RUPESH	
54	NINAWE PRANOTI RAJKUMAR	

55	PATHAK MUSKAN VINAY	
56	MESHRAM AYUSH BHARAT	
57	MOUNDEKAR VINKU MANIK	
58	WASE RUSHIKESH SHUBHAKAR	
59	SIRSAT VIKRANT DEVENDRA	
60	BALODIYA RITIKA VISHNU	
61	BILKAR AMISHA SITARAM	
62	JAUNJAL GARGI DILIP	
63	MANDAL SURAJ SHANKAR	
64	RAMAPURE ANUSHKA GANESH	
65	SHENDE OM RAJESH	
66	WAGH SARANG VILAS	
67	MESHRAM NIKHITA RAVIKANT	
68	JADHAV VARUN PANDIT	
69	MALIK DIPTI RAJVIRSINGH	
70	BHALAVI SIDDHESH RAMESHWAR	
71	PATLE GAURI SHRIKANT	
72	AMBEKAR ATHARV RAMBHAU	
73	PIMPLE MANYA GANESH	
74	DHOLE ISHA ANIL	
75	GEDAM ROHIT DIPAK	
76	DAF PRADNYA CHANDRAKANT	
77	DHADSE VAISHNAVI VIJAY	
78	MISAR KHUSHI MANOJ	
79	BANSOD NIKHIL MILIND	
80	TIDKE PRIYOG RAMKRUSHNA	

ugos Course Coordinator Dr. S. V. Khangar

Attendance Sheet Certificate Course on Physics behind Green Synthesis of No.

out upsics behind Green Synthesis of Nanoparticles from Mariatics	Course Duration: 01/08/2023-07/10/2023	Week-6 Week.7 What a	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	23333333	<u> </u>	2		1 d d & d	A A A A A A A A	14.99	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0.000.00000000000000000000000000000000	P P P P P P P P P P P P P P P P P P P	0000000000000	000		. 1 2 P: PPP 9. PP P P P P P P P P P P P P P P P	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 . 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	P P P P P P P P P P P P P P P P	10 10 10 10 10 10 10 10 10 10 10 10 10 1	P P P P P P P P P P P P P P P P P P P	q.	9999.9999.				
				SANGOLE AKANSHA SURHAGH	MARBATE SANSKRUTI RAIENDRA	YADAV SAPNA JAIKRISHNA	CHAUDHARY MINESU PAVINES SCILLES	SHENDE CHAITRAILI GANECUDAC				PARSHURAMKAR GAURAV MANOHAR	DHABEKAR SWATI FATTU	CHOUDHARY DHANSHREE NARENDRA	PAUNIKAR YASHWANT RAJU	AGARKAR PRANJAL VIJAY	LAKHE PRANAV BHUPESH	MOTWANI VARUN DOLAT	JANGADE SANJANA SADANAND	NAYAB NIDHI ARVIND	KENE JANVI SUBHASH	KHAPRE MUSKAN PRAKASH	SHARMA SNEHA RANJAYKUMAR	GANVIR ISHITA HEMANT	KARKI SRUSHTI SUBHASH	MEENA RUCHI MAHENDRA	BEDEKAR TUSHAR VAIBHAV	DHAKATE SAKSHI PRAMOD	PANTAWANE SHREYA SANJAY	PUAGAT SAMINANI SAGAR
1	1								1	1	1														1	1	1	1	1	1
		Sr.N		Ku	Ku	Ku	Ku	Ku	Ku	Ku	Ku	Ku	Ku	Ku	Ku	Ku	Ku	Ku	Ku	Ku	Ku	Ku	Ku	Ku	Ku	Ku	Ku	Ku	Ku	

- Meeting

	a	9.0	0 1	0101010			-99	0	0 0 0 0	0000	0000	01.0	1 2 2 4 2	2 2 2 3	0 4 9	7 2 2	PEEF		1-1	1 - 1 	1-9				8 4 4 4 4	2 2 4 9 0	9 9 9 9 9	7 d . 0	0 0 0 0 0 0	SP P P F	3 3 3 3 3	7 8 4 1 4 1 4 1 4	2 4 9 9 9	PIFIFIPIF	
	0		22220	- 0	00000	00		0 0 0 0 0	990 99	00000	24446	a a a a	물 너 너 너 너 너 나 나	33333	201113		d .	4 4 4 7	4.4		-	1. 4.	1.00	0 44 0	19	9 9	PPPPPP	P. 10 1 4 7	0 0 0 0 0 0 0	233334	3 3 3 5 3 3	99292	PPPA	999999	
	4 1 1 2 0 0	7	100000000000000000000000000000000000000	0000	00	00	0 00100	0 0 0 0 0 0	9999999	0000000	DEEGDC	91919191919	वी दी ती दी ने वि		9919191919	1 d d d l d l d	121212	10121010	1 1 1 2 2	a na 1 a	1.		111000	ナナナロナ		1410	R	4 4 4	929550	900000	4	10	1.	4 9 9 9 9 9	
	0000000000	000000	00000	00000	0	P.P. 100	· · · · ·	00000000	- d d	999999	cladd add b	de la la la	1 1 2 2 1 2 2 2	4 4 6 6 8	999999999	9 9 4 9 4 9	P 13 1 - 1 -	a d d d.	. 00	99.99	9-1	1 9 0 4	4	A A A A A		1 4 4 4 4	100	2	Odoud	1.0.1.0	400	050	000	94949	1 2 1 1
14110141414	10000	O D D	00000000	0 00 00 00	a dididididi a	9 . ph didid	0000000	. A & A.	dddd dd	01010101010101010	C G HA I	d toldd	PPP-1	El El Sald d	PB IPIPIA PIF	APPPPPPP		4- 4-	· 19:91	0	4 d	•	1		A . P P	0000		1000		10000	IC	1.40	アドドト	9999999	PITIT
141.1.	100.		a	0 0 d d	DDDD	1. I. d		add	eldel ·	fld	- P P	0 0 0 ·	4 4	9 9	PPP1	- H	1. 1. 1	991	9		999	444	999	2	a	3,0	2	D D D D	1	-	A d d	- 0	2	24	a d d
SHREYASH MAHADEO	UAY	LODHIKAR ANJALI NANESHWAR	RI GAJANAN	BHIWGADE SHRINAY YOGESH	DEVESH DHURVAJI	E GAYATRI VINOD	AK SATISH	JOSHI SANCHIT MADHUSUDAN	H SUNIL	KAR JANHVI DHIRENDRA	BHASH	LOKESH SHRINIWAS	ITA SITARAM	AM NISHANT DUSHYANT	NANNAWARE SAKSHI MURLIDHAR	EK PRAMOD	IT PASKAL	GAURI MUKESH	CHANDANKHEDE RACHANA VINESH	SHI SANJAY	JADHAV AASTHA SANJU	BHAGAT KRUNAL GAJANAN	SHRIVATSA PRASHANT	AL ABHISHEK SANJAY PRASAD	KAR MRUNMAYI RUPESH	NINAWE PRANOTI RAJKUMAR	SKAN VINAY	RAM AYUSH BHARAT	MOUNDEKAR VINKU MANIK	RUSHIKESH SHUBHAKAR	T VIKRANT DEVENDRA	DIYA RITIKA VISHNU	BILKAR AMISHA SITARAM	IAL GARGI DILIP	AL CUDAL CUANKAR
1	RAUT DISHA VUAY	DHIKAR AN	BALAPURE PARI GAJANAN	BHIWGADE SH	PATLE	KAWAL			SHINDE NILESH SUNIL	Ku KAYARKAR JAN	Ku JOSHI ARTI SUBHASH	PATEL	MASRA			1.1	PATRICK SUMIT PASKAL	ZADE			JADHAV AA		PITALE	JAYSW	MAN		PATH/	Mr. MESHRAM A	MOUN	WASE	SIRSA ⁻	BALO			
LAKDE SHRE	RAUT	Ц									-		_	-	-	-		=		1 =		13	Ku	Ku	Ku	Ku		Ī	Ä	ž	1.1	=	1 .	1 -	1
				Ku	Ku	Ku	Ku	Ku	Ku	Ku	Ā	Ku	Ku	Ku	Ku	Ku	Ku	Ku	Ku	Ku	Ku	Ku	×	×	×	×	Ku		Σ	Z	Mr	Ku	Mr	Mr	

	_																
	4	0	0.	00	0		9-10		00	9.	20	9			2 4	. 0	A A
	2 4	0	0 9	0 3	0 4	0	120		0	000	a	·d		2-1			X
	6	00	000	d d	20	0	2,0	10	0	00	40.	D D	0	9.04	10	10	今天を
	919		9.	000	00	69	2.0	10	9	-0-	@	9 9 1	9.9	F	8-	0.0	4
	8	d	P P	909	979	0	2,9	. Q	- 4	90	9	PPP	PP.	· ·	de l	4 4	-9-81%
	019	00	99	-	0		2 9	2	. d d	0.99	d d	PP	PP.	P	3	00	ある
Ø	0	1 4 0	999	2	020	- 4	1.4	00	0	d	. 90	PP	P P	ġ,	a	al	3
	19 0	pldld	6	2	0	1 4 7 6	10		90.	00	900	· 4	ė	d d d	9	PPP	166
	99	d d	e.	0	-	24	20	900	9.19	960	d	99	PPP	PI F	P P	Δ.	KICK
	c	•••••••••••••••••••••••••••••••••••••••	-	20	2	- 0	10	. 6	999	999	PP	d ·	· 90	e.	- 0	d d	all of
	00	-	202	- 1	970	- 0	0	d d d d	000	9	d dd	· (P) (F	PPP	999	990	9.1	-
	-	000	_	2.5	. 4	- 0		9		dd	d d	P P	9 ·	99	04 d d	dd d	applied
4		4	.0	2 6	-	2 0	0.0	0	Ċ	9	•	PP	-	9	p p f	a	16 3
9	F	5	26	214			0	-	d	d	-	.	-	d.	×	a	8
	ANUSHKA GANESH I RAJESH	NG VILAS	IIKHITA RAVIKANT	Mr. JADHAV VARUN PANDIT	MALIK DIPTI RAIVIRSINGH	BHALAVI SIDDHESH RAMESHWAR	I SHRIKANT	THARV RAMBHAU	VYA GANESH	ANIL	HT DIPAK	DAF PRADNYA CHANDRAKANT	SHNAVI VIJAY	USHI MANOJ	CHIL MILIND	DG RAMKRUSHNA	Sign of Teacher
	Mr. RAMAPURE ANUSHK Mr. SHENDE OM RAJESH	Mr. WAGH SARANG VILA	Mr. MESHRAM NIKHITA F	JADHAV V	MALIK DIPTI	BHALAVI SID	Mr. PATLE GAURI SHRIKA	Mr. AMBEKAR ATHARV R	Mr. PIMPLE MANYA GAN	DHOLE ISHA ANIL	GEDAM ROHIT DIPAK		DHADSE VAISHNAVI	MISAR KHUSHI M		_	
=	Щ.	Mr.	Mr.	Mr.	Mr.	Mr.	Mr.	Mr.	Mr.	Ku	Ku	Å	Ā	R	ž	- W	
3	2 B	99	67	68	69	2	11	72	73	74	75	76	1	78	62	8	3

Coordinates North Star

Shri Shivaji Education Society Amravati's

Congress Nagar, Nagpur

Department of Physics

Add-on Certificate Course (2023-2024)

Certificate Course: <u>Certificate Course on Physics behind Green Synthesis</u> of Nanoparticles from Medicinal Leaves

NOTICE (For UG)

Date: 6/10/2023

All the registered students for certificate course on "<u>Certificate Course on Physics behind</u> <u>Green Synthesis of Nanoparticles from Medicinal Leaves</u>" are hereby informed that their Final exam is held on 18/10/2023 at 11: 00 am sharp.

Note: Question paper will be of 60 Marks Time for examination is 1 hour Each question carry 2 Marks For any query contact to course coordinator.

Room NO-CS

Course coordinator: Dr. Sugandha V. Khangar Contact Number: 9975768840

Course coordinator

Dr. Sugandha V. Khangar

Shri Shivaji Education Society Amravati's Science College, Congress Nagar Nagpur Department of Physics

Certificate course

Title: "Certificate Course on Physics behind Green Synthesis of Nanoparticles from Medicinal Leaves"

Theory Examination Attendance Sheet-2023-2024

Course Coordinator: Dr. S. V. Khangar

Date: 18/10/2023

Sr. No.	Name of Students	Sign
1	SANGOLE AKANSHA SUBHASH	Asangele
2	MARBATE SANSKRUTI RAJENDRA	SMarbate
3	YADAV SAPNA JAIKRISHNA	Stadas.
4	CHAUDHARY MUNESH RAVINDRASINGH	Mehauelhorojf
5	SHENDE CHAITRALI GANESHRAO	Shende ()
6	BAGDE SAKSHI SATISH	Stagade
7	BAGDE SHRADDHA BABAN	Bagde
8	SINGH NEHA DARA	Nometho
9	PARSHURAMKAR GAURAV MANOHAR	Spatapheromete
10	DHABEKAR SWATI FATTU	Spetchelear
11	CHOUDHARY DHANSHREE NARENDRA	Dehoudhary
12	PAUNIKAR YASHWANT RAJU	Paunikas
13	AGARKAR PRANJAL VIJAY	Optopolence
14	LAKHE PRANAV BHUPESH	Plache
15	MOTWANI VARUN DOLAT	Motacans
16	JANGADE SANJANA SADANAND	Stande
17	NAYAB NIDHI ARVIND	Nnouch
18	KENE JANVI SUBHASH	Thene
19	KHAPRE MUSKAN PRAKASH	Mkhapoe
20	SHARMA SNEHA RANJAYKUMAR	Shame
21	GANVIR ISHITA HEMANT	Traniir

22	KARKI SRUSHTI SUBHASH	Parke
23	MEENA RUCHI MAHENDRA	RMeeno-
24	BEDEKAR TUSHAR VAIBHAV	
25	DHAKATE SAKSHI PRAMOD	Spratole
26	PANTAWANE SHREYA SANJAY	Spantavone
27	BHAGAT SANJIVANI SAGAR	Phagat
28	LAKDE SHREYASH MAHADEO	SLaphe
29	RAUT DISHA VIJAY	Dariet
30	LODHIKAR ANJALI NANESHWAR	Alashikac
31	BALAPURE PARI GAJANAN	PBrlapuse
32	BHIWGADE SHRINAY YOGESH	Bhillgade
33	PATLE DEVESH DHURVAJI	Paver
34	KAWALE GAYATRI VINOD	Gleande
35	PAROCHE PALAK SATISH	Paroche
36	JOSHI SANCHIT MADHUSUDAN	Joshi
37	SHINDE NILESH SUNIL	Nohinde
38	KAYARKAR JANHVI DHIRENDRA	Ikayaskas
39	JOSHI ARTI SUBHASH	Apshi
40	PATEL LOKESH SHRINIWAS	Leafel
41	MASRAM NIKITA SITARAM	Neikelan
42	MESHRAM NISHANT DUSHYANT	Momen
43	NANNAWARE SAKSHI MURLIDHAR	Spannaarse
44	MISHRA MAHEK PRAMOD	Muisha
45	PATRICK SUMIT PASKAL	Spatinik
46	ZADE GAURI MUKESH	Grade
47	CHANDANKHEDE RACHANA VINESH	Polanen
48	KANOJE KHUSHI SANJAY	1/ Kanze
49	JADHAV AASTHA SANJU	Arthav
50	BHAGAT KRUNAL GAJANAN	Approval
51	PITALE SHRIVATSA PRASHANT	Call la
52	JAYSWAL ABHISHEK SANJAY PRASAD	States
53	MANKAR MRUNMAYI RUPESH	-

54	NINAWE PRANOTI RAJKUMAR	Porme
55	PATHAK MUSKAN VINAY	Dikathah
56	MESHRAM AYUSH BHARAT	America
57	MOUNDEKAR VINKU MANIK	Maund deal
58	WASE RUSHIKESH SHUBHAKAR	Roase
59	SIRSAT VIKRANT DEVENDRA	VSteed
60	BALODIYA RITIKA VISHNU	Pp la la la la
61	BILKAR AMISHA SITARAM	Apilla
62	JAUNJAL GARGI DILIP	- polyaction
63	MANDAL SURAJ SHANKAR	Smandal
64	RAMAPURE ANUSHKA GANESH	Annia
65	SHENDE OM RAJESH	(Thank and e
66	WAGH SARANG VILAS	A Dollar
67	MESHRAM NIKHITA RAVIKANT	Shing in
68	JADHAV VARUN PANDIT	Notestandes
69	MALIK DIPTI RAJVIRSINGH	Dmalite
70	BHALAVI SIDDHESH RAMESHWAR	Schalauel
71	PATLE GAURI SHRIKANT	Sphaladel Con H.P.
72	AMBEKAR ATHARV RAMBHAU	Amplead
73	PIMPLE MANYA GANESH	Ambertan
74	DHOLE ISHA ANIL	Allale
75	GEDAM ROHIT DIPAK	
76	DAF PRADNYA CHANDRAKANT	Rogedon
77	DHADSE VAISHNAVI VIJAY	Glat
78	MISAR KHUSHI MANOJ	Valloadtes
	BANSOD NIKHIL MILIND	Kluseno
		MBansode
80	TIDKE PRIYOG RAMKRUSHNA	Pidko

Course Coordinator Dr. S. V. Khangar

Shri Shivaji Education Society Amaravati's Science College Congress Nagar, Nagpur Department of Physics

Add-on Certificate Course on Physics behind Green Synthesis of Nanoparticles from Medicinal Leaves

THEORY EXAM

Date: 18/10/2023	Max. Time: 1 Hour
Max. Marks: 60	Marks Obtained:

Student Name: -----

Note: i) All questions are compulsoryii) Each question carries two marksiii) Tick the correct option

- 1. What are nanoparticles?
- A) Particles with a size between 1 to 100 nanometers
- B) Particles with a size between 1 to 100 micrometers
- C) Particles with a size between 1 to 100 millimeters
- D) Particles with a size greater than 100 nanometers
- 2. Which physical property of nanoparticles makes them suitable for various applications?
 - A) High density
 - B) Large size
 - C) High surface area to volume ratio
 - D) Low reactivity
- 3. What is the principle behind green synthesis of nanoparticles from medicinal leaves?
 - A) Using harmful chemicals for synthesis

- B) Employing environmentally friendly methods
- C) Generating toxic waste during synthesis
- D) Increasing energy consumption during synthesis
- 4. Which component of medicinal leaves is primarily responsible for nanoparticle synthesis?
 - A) Carbohydrates B) Proteins C) Flavonoids D) Lipids
- 5. How does the surface plasmon resonance phenomenon contribute to the optical properties of nanoparticles?
 - A) It decreases the absorption of light
 - B) It increases the scattering of light
 - C) It enhances the absorption and scattering of light
 - D) It has no effect on the optical properties
- 6. Which physical phenomenon governs the stability of nanoparticles in solution?
 - A) Brownian motion
 - B) Electromagnetic induction
 - C) Newton's laws of motion
 - D) Boyle's law
- 7. What are the potential biomedical applications of nanoparticles synthesized from medicinal leaves?
 - A) Drug delivery B) Imaging C) Tissue engineering D) All of the above
- 8. How do the unique properties of nanoparticles enhance their effectiveness in targeted drug delivery?
 - A) They decrease bioavailability
 - B) They increase toxicity
 - C) They improve stability

D) They enhance specificity and reduce side effects

- 9. What is the typical size range of nanoparticles?A) 1-10 millimeters B) 1-100 micrometers C) 1-100 nanometers D) 1-10 centimeters
- 10. What property of nanoparticles makes them highly reactive in chemical reactions?A) Large size B) High density C) High surface area to volume ratio D) Low surface area to volume ratio
- 11. Green synthesis of nanoparticles involves:
 - A) Using harmful chemicals
 - B) High energy consumption
 - C) Environmentally friendly methods
 - D) Generating toxic waste
- 12. Which component of medicinal leaves is often responsible for nanoparticle synthesis?
 - A) Carbohydrates B) Proteins C) Flavonoids D) Lipids
 - 13. What phenomenon is responsible for the color changes observed in nanoparticles due to surface plasmon resonance?
 - A) Absorption B) Scattering C) Refraction D) Diffraction
 - 14. What physical principle governs the stability of nanoparticles in solution?
 - A) Boyle's law B) Archimedes' principle C) Brownian motion D) Newton's laws of motion
 - 15. What are the potential biomedical applications of nanoparticles?
 - A) Drug delivery B) Imaging C) Tissue engineering D) All of the above
 - 16. How do nanoparticles enhance targeted drug delivery?
 - A) By increasing toxicity
 - B) By reducing specificity
 - C) By decreasing stability
 - D) By enhancing specificity and reducing side effects
 - 17. Which property of nanoparticles is dependent on their size?

A) Density B) Reactivity C) Surface area to volume ratio D) Color

- 18. Which technique is commonly used to determine the size distribution of nanoparticles?A) Scanning Electron Microscopy (SEM)
 - B) Atomic Force Microscopy (AFM)
 - C) Dynamic Light Scattering (DLS)
 - D) X-ray Diffraction (XRD)
- 19. Which technique provides information about the surface properties of nanoparticles? A) Transmission Electron Microscopy (TEM)
 - B) Fourier Transform Infrared Spectroscopy (FTIR)
 - C) Energy Dispersive X-ray Spectroscopy (EDS)
 - D) X-ray Photoelectron Spectroscopy (XPS)
- 20. What information can be obtained from a UV-Vis spectroscopy analysis of nanoparticles?

- A) Size distribution
- B) Elemental composition
- C) Optical properties
- D) Surface charge
- 21. Which technique is used to determine the crystal structure of nanoparticles?
 - A) Scanning Electron Microscopy (SEM)
 - B) Atomic Force Microscopy (AFM)
 - C) X-ray Diffraction (XRD)
 - D) Transmission Electron Microscopy (TEM)
- 22. What is one potential application of nanoparticles characterized by their surface charge? A) Drug delivery B) Catalysis C) Imaging D) Tissue engineering
- 23. How can the information obtained from nanoparticle characterization techniques be used in material science?
 - A) To improve manufacturing processes
 - B) To develop new materials with specific properties
 - C) To understand the behavior of materials at the nanoscale
 - D) All of the above
- 24. What is the primary objective of green synthesis?
 - A) Maximizing chemical waste
 - B) Minimizing environmental impact
 - C) Maximizing energy consumption
 - D) Minimizing cost
- 25. Which of the following is a characteristic of green synthesis methods?
- A) High energy consumption
- B) Use of toxic solvents
- C) Generation of hazardous by-products
- D) Use of renewable resources
- 26. Which of the following is a common method used in green synthesis?
- A) Microwave irradiation B) Incineration C) Chlorination D) Hydrolysis
- 27. Which technique is used to monitor the progress of green synthesis reactions in real-time?
- A) Gas chromatography

- B) Nuclear magnetic resonance spectroscopy
- C) Infrared spectroscopy
- D) Ultraviolet-visible spectroscopy
- 28. What is a significant advantage of green synthesis over conventional synthesis methods?
- A) Higher cost B) Lower yield C) Reduced environmental impact D) Longer reaction times
- 29. Which of the following is NOT a benefit of green synthesis?
- A) Reduced waste generation
- B) Enhanced energy consumption
- C) Safer working conditions
- D) Utilization of renewable resources
- 30. Which industry is particularly interested in green synthesis methods for product development?
- A) Automotive B) Textile C) Chemical D) Construction

Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur

Shri Shivaji Education Society Amravati's Science College, Congress Nagar Nagpur Department of Physics 2023-2024

Add-on course Examination

Title: "Certificate Course: Certificate Course on Physics behind Green Synthesis of Nanoparticles from Medicinal Leaves"

Course Coordinator: Dr. Sugandha Khangar

DATE: 10/11/2022

Total Marks: 100

Sr. No.	Name of Students	Theory Marks (60M)	Practical Marks (40M)	Total (100M)	Grade
1	SANGOLE AKANSHA SUBHASH	50	34	84	A
2	MARBATE SANSKRUTI RAJENDRA	44	38	82	A
3	YADAV SAPNA JAIKRISHNA	52	38	90	A+
4	CHAUDHARY MUNESH RAVINDRASINGH	56	37	93	A+
5	SHENDE CHAITRALI GANESHRAO	52	38	90	A+
6	BAGDE SAKSHI SATISH	56	38	94	A+
7	BAGDE SHRADDHA BABAN	58	30	88	A
8	SINGH NEHA DARA	40	35	75	A
9	PARSHURAMKAR GAURAV MANOHAR	50	38	88	A
10	DHABEKAR SWATI FATTU	44	35	79	A
11	CHOUDHARY DHANSHREE NARENDRA	52	38	90	A+
12	PAUNIKAR YASHWANT	44	34	78	A

STATEMENT OF MARKS

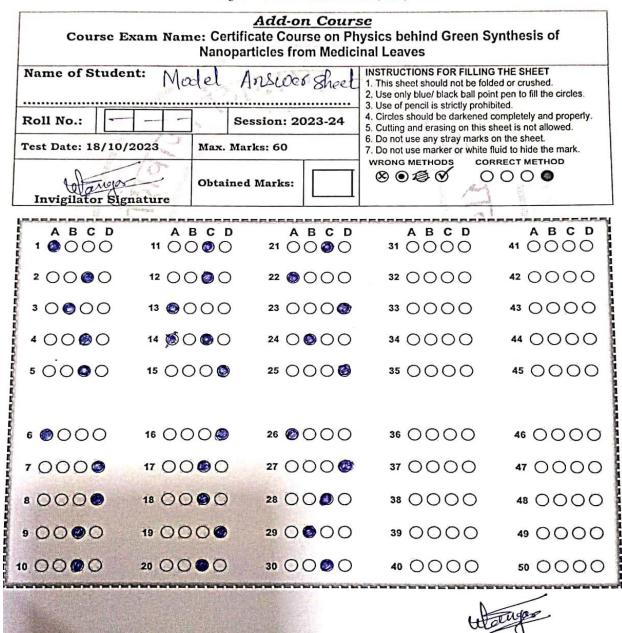
	RAJU				
13	AGARKAR PRANJAL VIJAY	58	34	92	Λ+
14	LAKHE PRANAV BHUPESH	56	36	92	Λ+
15	MOTWANI VARUN DOLAT	54	30	84	Λ
16	JANGADE SANJANA SADANAND	58	30	88	Α
17	NAYAB NIDHI ARVIND	44	30	74	B+
18	KENE JANVI SUBHASH	56	38	94	Λ+
19	KHAPRE MUSKAN PRAKASH	54	30	84	Λ
20	SHARMA SNEHA RANJAYKUMAR	56	34	90	A+
21	GANVIR ISHITA HEMANT	58	36	94	A+
22	KARKI SRUSHTI SUBHASH	60	32	82	А
23	MEENA RUCHI MAHENDRA	58	30	78	₿
25	DHAKATE SAKSHI PRAMOD	58	32	90	A+
26	PANTAWANE SHREYA SANJAY	54	38	92	A+
27	BHAGAT SANJIVANI SAGAR	52	38	90	A+
28	LAKDE SHREYASH MAHADEO	54	32	86	A
29	RAUT DISHA VIJAY	58	30	88	A
30	LODHIKAR ANJALI NANESHWAR	42	38	80	A
31	BALAPURE PARI GAJANAN	52	38	90	A+
32	BHIWGADE SHRINAY YOGESH	56	40	96	A+
33	PATLE DEVESH DHURVAJI	58	40	98	A+
34	KAWALE GAYATRI VINOD	50	32	82	A
35	PAROCHE PALAK SATISH	54	28	82	A
36	JOSHI SANCHIT MADHUSUDAN	50	36	86	A
37	SHINDE NILESH SUNIL	48	36	84	A
38	KAYARKAR JANHVI DHIRENDRA	44	38	82	A
39	JOSHI ARTI SUBHASH	50	36	86	A

40	PATEL LOKESH	50	38	88	A
41	MASRAM NIKITA	60	30	90	A+
42	MESHRAM NISHANT	52	40	92	A+
43	DUSHYANT NANNAWARE SAKSHI	54	40	94	A+
- 44	MURLIDHAR MISHRA MAHEK	42	38	80	А
45	PRAMOD PATRICK SUMIT	58	30	88	A+
46	ZADE GAURI MUKESH	52	38	90	A+
47	CHANDANKHEDE RACHANA VINESH	58	36	94	A+
48	KANOJE KHUSHI SANJAY	54	36	90	A+
49	JADHAV AASTHA SANJU	52	30	82	Α
50	BHAGAT KRUNAL	50	30	80	А
51	GAJANAN PTTALE SHRIVATSA PRASHANT	58	32	90	A+
52	JAYSWAL ABHISHEK SANJAY PRASAD	50	38	88	A+
53	MANKAR MRUNMAYI RUPESH	54	28	82	А
54	NINAWE PRANOTI RAJKUMAR	58	38	96	A+
55	PATHAK MUSKAN VINAY	50	34	84	A
56	MESHRAM AYUSH BHARAT	52	30	82	A
57	MOUNDEKAR VINKU MANIK	50	31	81	A
58	WASE RUSHIKESH SHUBHAKAR	58	38	96	A+
59	SIRSAT VIKRANT DEVENDRA	46	38	84	A
60	BALODIYA RITIKA VISHNU	52	38	90	A+
61	BILKAR AMISHA SITARAM	54	39	93	A+
62	JAUNJAL GARGI DILIP	56	30	86	A
63	MANDAL SURAJ SHANKAR	54	40	94	A+-
64	RAMAPURE ANUSHKA GANESH	52	38	90	A+
55	SHENDE OM RAJESH	54	30	84	A
56	WAGH SARANG VILAS	50	36	86	A+
57	MESHRAM NIKHITA RAVIKANT	52	30	82	A
8	JADHAV VARUN PANDIT	52	38	90	A+
9	MALIK DIPTI	44	30	74	В
0	RAJVIRSINGH BHALAVI SIDDHESH RAMESHWAR	50	38	88	A

71	PATLE GAURI SHRIKANT	58	36	94	A+
72	AMBEKAR ATHARV RAMBHAU	50	39	89	Α
73	PIMPLE MANYA GANESH	60	30	80	А
74	DHOLE ISHA ANIL	60	34	94	A+
75	GEDAM ROHIT DIPAK	54	30	84	А
76	DAF PRADNYA CHANDRAKANT	58	34	92	A+
77	DHADSE VAISHNAVI VIJAY	58	30	88	А
78	MISAR KHUSHI MANOJ	54	36	90	A+
79	BANSOD NIKHIL	58	38	96	A+
	MILIND				
80	TIDKE PRIYOG RAMKRUSHNA	50	32	82	A

Eugo te

Dr. Sugandha V. Khangar Course Coordinator Department of Physics



Shri Shivaji Education Society, Amravati's SCIENCE COLLEGE

Congress Nagar, Nagpur-12 (M.S.), India

Accredited with CGPA of 3.51 at 'A+' grade by NAAC, Bangalore A "College with Potential for Excellence" identified by UGC New Delhi. Institutional Member of APQN Recognized Centre for Higher Learning and Research Mentor College under 'PARAMARSII Scheme', UGC, New Delhi

Shri Shivaji Education Society, Amravati's Science College Congress Nagar, Nagpur-12 (M.S.), India Accredited with COPA of 3.51 at 'A' grade by NAAC, Bangalore A "College with Potential for Execuence" identified by UGC New Delhi. Institutional Member of APON Becognized Centre for Higher Learning and Research Mentor College under "PARAMARSH Beheme", UGC, New Delhi					
<u>Add-on Course</u> Course Exam Name: Certificate Course on Physics behind Green Synthesis of Nanoparticles from Medicinal Leaves					
Name of Student: A.kanshaS:Sangale Roll No.: 001 Session: 2023-24			INSTRUCTIONS FOR FILLING THE SHEET 1. This sheet should not be folded or crushed. 2. Use only blue/ black ball point pen to fill the circles. 3. Use of pencil is strictly prohibited. 4. Circles should be darkened completely and properly. 5. Cutting and erasing on this sheet is not allowed. 6. Do not use any stray marks on the sheet.		
Test Date: 18/10/2023		Iax. Marks: 60 Obtained Marks:	50	7. Do not use marker or white flui WRONG METHODS CORR	
A B C D 1 @ 0 0 0	A B 11 00		B C D	A B C D 31 0 0 0	A B C D 41 0000
20000	-/12 000	C 22 🕻	000	32 0 0 0 0	42 0 0 0 0
30000	13 🔊 🔿 (23 (000	33 0000	43 0000
40000	14 000	24 (34 0000	44 0000
<i>∮</i> ₅ 0 0 00	15 🔾 🔾 (35 0000	45 0000
€ @ 000	16 0 0 0	26 🕼	0000	36 🔿 🔿 🔿	46 0000
70000	17 000	27 (000	37 0 0 0 0	47 0000
80000	718 0 00	C) 28 (0000	38 0 0 0 0	48 0000
90000	19 000		0000	39 0 0 0 0	49 0000
10 0 0 0 0	20 🔿 🔿	30 (0000	40 0 0 0 0	50 0 0 0 0

