

Science College, Nagpur Department Of Physics

Certificate Course - Advanced Ceramics and Composites

Course Coordinator - Dr. Shahin K. Sayyad

Science College

Congress Nagar, Nagpur

Department Of Physics

Certificate Course Advanced Ceramics and Composites

· Course Objectives:

- To provide a deep understanding of the structure, properties, and applications of advanced ceramics and composites.
- To develop skills in the synthesis and processing of ceramic and composite materials.
- To enable students to analyze the mechanical, thermal, and electrical properties of these materials.
- To explore current trends and advancements in ceramics and composites.
- To prepare students for research and industrial roles in material science focusing on ceramics and composites.

- Key Properties and Benefits of the Add-On Course on Advanced Ceramics and Composites
- . Companion Controlom
- Fundamental Principles: Gain a deep understanding of the basic science behind advanced ceramics and composites.
- Material Properties: Learn about the mechanical, thermal, electrical, and chemical properties of these materials.
- Manufacturing Techniques: Explore various fabrication and processing methods, including sintering, hot pressing, and additive manufacturing.
- Hands-On Experience
- Laboratory Work: Engage in practical experiments and projects to apply theoretical knowledge.
- Real-World Applications: Study case studies from industries such as aerospace, automotive, electronics, and biomedical engineering.
- · Expert Instruction
- Industry Professionals: Learn from experienced instructors who are experts in the field of absenced committee, and communities.
- Guest Lectures: Attend sessions with guest speakers from leading companies and
 research institutions.
- Cutting-Edge Research
- Latest Innovations: Stay updated on the latest advancements and trends in materials science.
- Research Projects: Participate in research projects and contribute to innovative
- Career Advancement
- Specialized Knowledge: Enhance your expertise in a high-demand field with specialized knowledge that sets you apart.
- Networking Opportunities: Connect with professionals and peers in the industry through workshops, seminars, and conferences.
- Certification: Earn a certificate that validates your skills and knowledge, boosting your employability and career prospects.

Enroll Now

Dr. S. K. Sayyad (Co-ordinator)

Department of Physics SSES Amt's Science College Congress
Nagar Nagpur

Phone: [9922901201]

Email: [shahinsayyed87@gmail.com]

Last Date of Registration:25/07/2023

Shri Shivaji Education Society Amaravati's Science College Congress Nagar, Nagpur Department of Physics

Report on Add-on Course
"Advanced Ceramics and Composites"
Course For Postgraduate Physics Students
Duration: 11/08/2023 to 14/10/2023

Total Students: 18

This 10-week add-on course provided postgraduate physics students with an in-depth understanding of advanced ceramics and composites. The course was conducted by Dr. S.K. Sayyad, Assistant Professor, Department of Physics SSES Amt's Science College Congress Nagar Nagpur. Total 18 Students of M.Sc. I and III Sem Physics were enrolled for the course.

The course combined theoretical knowledge with practical applications, focusing on the properties, processing techniques, and applications of these materials in various industries. The theory classes have been taken in room no. C4 from 4:00 p.m. to 5:00 p.m. every Friday and Saturday and 5:00 p.m. to 6:00 p.m. practical on Saturday in the laboratory for 10 weeks.

The students were evaluated through a combination of MCQ based written exam of 80 marks and practical lab work of 20 marks. All 18 students successfully completed the course. The overall performance was commendable, with several students showing exceptional understanding and innovative approaches in their projects.

The 10-week advanced ceramics and composites course was a significant addition to the postgraduate curriculum for physics students, providing them with critical skills and knowledge applicable in various high-tech industries. The successful completion of this course has prepared the students for further research and professional careers in materials science and engineering.

Action Taken: The feedback from the Advanced Ceramics and Composites certificate course has been instrumental in identifying areas for improvement. The actions taken reflect our commitment to providing a high-quality learning experience and ensuring that our course meets the professional and academic needs of our students. We will continue to monitor feedback and make necessary adjustments to maintain the highest standards of education.

Dr. S.K.Sayyad

Course Coordinator

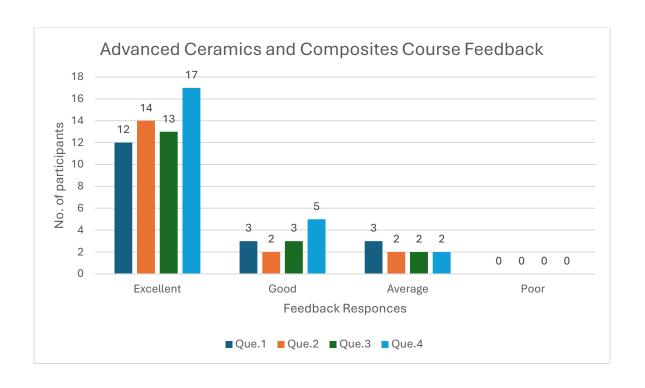
Department of Physics

Shri Shivaji Education Society Amaravati's Science College Congress Nagar, Nagpur Department of Physics

"Advanced Ceramics and Composites"

Course For Postgraduate Physics Students Duration: 11/08/2023 to 14/10/2023

Course Coordinator: Dr. S. K. Sayyad


Feedback form

Advanced Ceramics and Composites Course Feedback Questionnaire

Name:

□Poor

1) How would you rate the overall quality of the course content? ☐ Excellent \square Good □Average □ Poor 2) How relevant was the course content to your professional or academic goals? □ Excellent \square Good □Average □Poor 3) How would you rate the hands-on lab sessions and practical exercises? □Excellent \Box Good □Average □Poor 4) How would you rate the availability and quality of resources (e.g., textbooks, online materials)? □ Excellent \square Good □Average

To, The Principal SSES Amt's Science College, Congress Nagar, Nagpur-12

Subject: For permission to conduct the add on courses in Physics during the session 2023-2024

Respected Sir,

This is to request you that, the teachers of Physics department have prepared the syllabus and modules of the 30 hours certificate courses for the session 2023-2024.

The details of the course module, syllabus and time table is submitted here with.

Hence please permit to run the add on courses and oblige me.

Thanking you

Yours sincerely

Dr. S. W. Anwane
Professor and Head
Department of Physics
Shri Shivaji Education Society Amravati's
SCIENCE COLLEGE
Congress Nagar, Nagpur.

Permitted pohore

Science College

Congress Nagar, Nagpur

Department of Physics

Add-on Certificate Course (2023-2024)

Certificate Course: Advanced Ceramics and Composites

Notice

Date: 05/08/2023

The Department of Physics is conducting Add-on Certificate Course on Advanced Ceramics and Composites for the session 2023-24. Interesting students of M.Sc. Semester I & Semester III should register themself in early and contact to the Course Coordinator Dr. S. K. Sayyad immediately.

Course	Admission Fees
Advanced Ceramics and Composites	Free

Dr. S.K. Sayyad

Course Coordinator

Shri Shivaji Education Society Amravati's Science College, Nagpur Department Of Physics

Course Module and Syllabus

Certificate Course: Advanced Ceramics and Composites

Course Coordinator - Dr. Shahin K. Sayyad

Course Duration: 30 hours (spread over 10 weeks, 3 hours per week)[11/08/23-14/10/2023]

Course Overview: This certificate course provides participants with a comprehensive understanding of advanced ceramics and composites, covering their properties, fabrication methods, applications, and future prospects. Through a combination of lectures, case studies, and interactive discussions, participants will gain valuable insights into the latest developments in these materials and their significance in various industries.

Course Objectives:

- > To provide a deep understanding of the structure, properties, and applications of advanced ceramics and composites.
- ➤ To develop skills in the synthesis and processing of ceramic and composite materials.
- > To enable students to analyze the mechanical, thermal, and electrical properties of these materials.
- To explore current trends and advancements in ceramics and composites.
- > To prepare students for research and industrial roles in material science focusing on ceramics and composites.

Course Outcomes:

By the end of the course, students will be able to:

- > Understand the fundamental concepts and properties of advanced ceramics and composites.
- > Synthesize and process various ceramic and composite materials.
- Analyze and interpret the properties of these materials.
- Apply ceramics and composites in real-world applications.
- > Present and document their experimental findings effectively.

Duration of course: Ten weeks (30 Hours)

The Structure of Syllabus and system of evaluation -

Course	Theory Paper	Ma	arks
Certificate Course in Advanced Ceramics and Composites	Theory paper- Advanced Ceramics and Composites *Theory examination will be of MCQ pattern having 40 questions each with equal marks.		20 Marks 00

Internal Quality Assurance Cell

Man Haddle

Internal Quality Assurance Cell (IQAC)
S. S. E. S. A. Science College Congress Magar, Nagpos
Course Co-ordinator

S. S. E. S. Amravati's Science College, Nagpur.

Syllabus

Course Content:

Unit 1: Introduction to Ceramics and Composites

- Overview and classification of ceramics and composites
- ➤ Applications in various industries
- ➤ Key properties and advantages
- > Ceramic powder synthesis
- Forming techniques (slip casting, tape casting, pressing)
- > Sintering and densification processes

Unit 2: Synthesis and Processing of Composites

- > Types of composite materials (metal matrix, polymer matrix, ceramic matrix)
- Fabrication techniques (lay-up, pultrusion, resin transfer molding)
- > Interface and bonding mechanisms
- > Strength, toughness, and hardness of ceramics and composites
- > Fracture mechanics
- > Wear and abrasion resistance

Unit III: Thermal , Electrical and Magnetic Properties

- > Thermal conductivity and expansion
- > Thermal shock resistance
- ➤ High-temperature behavior
- > Electrical conductivity and insulation
- > Dielectric properties
- > Magnetic ceramics and composites

Unit IV: Characterization Techniques

- ➤ Microscopy (SEM, TEM)
- > Spectroscopy (EDS, Raman)
- ➤ Mechanical testing (hardness, tensile, impact)

Practical Demonstration Sessions

- 1. Synthesis of Materials using Sol-gel method.
- 2. Synthesis of Materials using Hydrothermal method.
- 3. Synthesis of Materials using coprecipitation method.
- 4. Synthesis of Materials using soft combustion method.
- 5. Identification of functional groups and chemical bonds in materials through analysis of infrared absorption spectra.
- 6. Elemental analysis of materials to determine their chemical composition using EDX
- 7. Investigation of molecular vibrations and crystal structures of materials through analysis of Raman scattering spectra.

Distribution of marks:-

Synthesis Method (05 Marks)
Characterization Techniques (05 Marks)
Common issues and diagnostics (05 Marks)
Preventive maintenance (05 Marks)

Week-wise teaching plan

Week	HRS.	Syllabus
Week1	1	Overview and classification of ceramics and composites
	1	Applications in various industries
	1	Key properties and advantages
Week 2	1	Ceramic powder synthesis
	1	Forming techniques (sol gel, Hydrothermal, Co-precipitation, Pallet formation)
	1	Sintering and densification processes
Week 3	1	Types of composite materials (metal matrix, polymer matrix, ceramic matrix)
	2	Fabrication techniques (Solution Casting)
Week 4	2	Practical :Synthesis of Materials using Sol-gel method.
	1	Practical: Synthesis of Materials using Hydrothermal method
Week 5	2	Practical: Synthesis of Materials using coprecipitation method.
	1	Interface and bonding mechanisms
Week 6	1	Strength, toughness, and hardness of ceramics and composites
	1	Fracture mechanics
	1	Wear and abrasion resistance
Week 7	1	Thermal conductivity and expansion
	1	Thermal shock resistance
	1	High-temperature behavior
Week 8	1	Electrical conductivity and insulation
	1	Dielectric properties

	1	Magnetic ceramics and composites
Week 9	1	Microscopy (SEM, TEM)
	1	Spectroscopy (EDS, Raman)
	1	Mechanical testing (hardness, tensile, impact)
Week 10	1	Identification of functional groups and chemical bonds in materials through analysis of infrared absorption spectra.
	1	Elemental analysis of materials to determine their chemical composition using EDX
	1	Investigation of molecular vibrations and crystal structures of materials through analysis of Raman scattering spectra.

SSES Amravati's

Science College, Congress Nagar, Nagpur-12

Session 2023-24

Certificate course (10 weeks)

(Advanced Ceramics and Composites)

Timetable

Sr. No.	Day	Theory
1	Friday	SKS (C4) Theory 4.00 PM – 5.00 PM
2	Saturday	SKS (C4) Theory, 4.00 PM – 5:00 PM
3	Saturday	(Physics Lab) practical, 5.00 PM – 6.00 PM

Course Coordinator Dr. S.K.Sayyad

Shri Shivaji Education Society Amravati's Science College, Congress Nagar Nagpur Department of Physics Add-on Certificate course

Title: "Certificate Course: Advanced Ceramics and Composites" Registration List of Students 2023-2024

Sr. No.	Name Of Students
1	Achal Mohurle
2	Premlata Uparikar
3	Prerna Ambade
4	Rahul Khangar
5	Riya Faldu
6	Sakshi Nale
7	Samiksha Bhusari
8	Vaishnavi Khade
9	Vedant Maske
10	Yash Chaube
11	Joy George Panakal
12	Mahevash Zamani Baig
13	Nakul Avinash Deogade
14	Nisha Yuvraj Shidurkar
15	Ranita Eknath Aglave
16	Sakshi Omprakash Ukey
17	Sakshit Janardhan Wahane
18	Shraddha Vishwas Raut

Course Coordinator Dr. S.K.Sayyad

Science College, Congress Nagar, Nagpur Certificate course on Advanced Ceremie and Compatien Theory Class Attendance Sheet

8	Students Full Name	-	*	100	*	v	4	-	0	9	=	2	2	=	4	91	12	-	2	8	Z	11	n	Ħ,	23	8	B	A	R	8	ì
9		9				1	0	1	1	9	18	1		0	S	-	9	1	9	9	6	6		0	0	-	1	-	9	0	3
-	1 Achai McFurle	Ť	-	1	4	-	1	7	1	۲	4	1	1	-	¥	-	Į.	4	t		s	4	9	þ	6	1	P		100	10	r
FI	2 Premiata Uparikar	-	4	g.	_	Z.	-			-	-	4	9	4		-	_	Ц	3	4	-	4	+	4	4	k	¥	*	#	*	4
1	Tilbrens Arthado	-	4	9	-	94	4		8	-	e	9	4	d	0	0	Ď,	0.		0	٥	2	-	•	2	4	7	H	7	4	ä
٩	Dobre Changes	-	,	Ca.	A	-	-	5		9	0	4	6		0	+	4	d	d	u	4	٩	4	4	9	9	-			읙	d
-	Canal County of	6.	9	9	T	6	t	E	1	F	5	-	9	9	9	-	£	ū.	a	0		4	4	63.	-	9	_	2	1	4	11
5	S Nove Paids	1	+	- 4	1	t	1	1	4	1	1	1	1	- 5	- 6	c	J	d			0	a	8	9	9	-	-	9	-	2	12
9	6 Sakohi Nale	-	7	7		2		3	4	4	4	-	1	-	-	V	-	J	K	1	1	4	1	1	1	F	t	k	+	E	E
78	7 Sarrik Sto Bhusari	0	9	d	2	Ç.	40	-	-	-	4	4	0	4	9	0	1	2.	a	4	4	*	-	7	4	1	1	4	+	J	100
5	2 Valobrani Khiide	9	a.	S	9	-				*	9	0	0	d	+	0	9	4	Q		9	4	Ħ	4	7	+		1	1	+	1
100	Schoolse Macks	a	9	0	Ø.	5	Ga.	6	-	0		D	D	9	+	O	2	Q.	-	9	٥	1	*	-			7	1	1		
3	2000 C 450 C	9		9	-	E	-	-	9	•	0	9	0	O.	d	9	0	9	5	0	4	4	+	7		8		0	1	2	
-	St. Common	9	9	9	E	F	t	F.	-	9	9	9		0	0	A	0	2	d.	Q	2		_	-			d	1		0	
흮	11 Joy George Panasa	7		÷	4	-	1	Ŧ	T	4	45	45	0	0		Ja		9	4	d	0	4	F	-	1		à	0	q	d	d
2 Ma	12 Mahevesh Zamani Baig	-	4	4		1	J	7	1	4	4	+	4	4	4	4	-	4	þ	1	9	Þ	1	H	o	Q		5	2	×	0
3 Ne	13 Nekul Avinsch Deopade	-	0			0	3	7	-	:	- 1	4	-	1	1	*	-	4	5	0	40	P	10	+	t	4		9	Į,	0	a
A Nic	14 Nigha Yuvraj Shidurkar	9-		9	2	-			7	9	4	1		1	4	4	4	-	7	+	4	- 0	*	1	1	1	Ţ	-	4	9	q.
C Ren	15 Ranta Charth Astave	the	0	4	-	2	1	0	0	-		- 1	-	7	4	7	۲	-	-	4	4	4	T	t	1		6	4		0	0
1	At Successively (Saw		5	G.	D.	-			-	1		۵	9	9	*	-	9	-	9	à-	8	4	+	1		J	4	4		+	45
1	10 sector office average contra	d	2	d	-	6	0	9	-	0	Q.	9.	9.	Q.	0	9	9	-		-				0	4	-	4	4		1	¥
2	17 Sakuht Janardhan Wanane	9		,	9	k	2	0	Ê	Ê		-	9	0	9		-	2	5	Q.	d	0	-	9	_	0	4	-	0	-	1
Shra	18 Shraddha Vishwas Rauf	4	,			5	1	-		4	1	1	-	-	4	1	1	1	ŧ	-	1	1	1	1	l		١	١			

Dr. S. R. Savyad Course Coordinator

Science College

Congress Nagar, Nagpur

Department of Physics

Add-on Certificate Course (2023-2024)

Certificate Course: Advanced Ceramics and Composites

NOTICE

Date:

All the registered students of add-on Course on **Advanced Ceramics and Composites** under Department of Physics for the session 2023-24 are hereby informed that the theory examination is to be scheduled on 28/10/2023 (Saturday) at 10:30 am to 11:30 am in Physics C4 room at our college centre. All Students should be present in the laboratory before 10 mins. of scheduled time of examination.

Dr. S.K.Sayyad Course Coordinator Department of Physics

Shri Shivaji Education Society Amravati's Science College Congress Nagar Nagpur Departrment Of Physics

Certificate course on Advanced Ceramic and Composites Certificate Final Exam Attendance of Students

Date:

Time:

Date	· · · · · · · · · · · · · · · · · · ·	111116.
Sr. N	No. Name Of Students	Signature Of Students
	1 Achal Mohurle	Amsheula
	2 Premlata Uparikar	Proprietar
	3 Prerna Ambade	Dund
	4 Rahul Khangar	(B. Changer)
	5 Riya Faldu	RIYAL
	6 Sakshi Nale	Chale
	7 Samiksha Bhusari	Court Se
	8 Vaishnavi Khade	Anote
	9 Vedant Maske	Smake
	10 Yash Chaube	Ythouse
	11 Joy George Panakal	Cos
	12 Mahevash Zamani Baig	Con
	13 Nakul Avinash Deogade	Cheergale
	14 Nisha Yuvraj Shidurkar	Cyphedenican
	15 Ranita Eknath Aglave	Reglave
	16 Sakshi Omprakash Ukey	Shey
	17 Sakshit Janardhan Wahane	Share
	18 Shraddha Vishwas Raut	Sout 1

Covere Coordinator
Dr. Shahin K. Sayyad
Assistant Professor
Dept. of Physics
SSESA'S Science College Nagpur

Shri Shivaji Education Society Amaravati's Science College Congress Nagar, Nagpur Department of Physics

Add-on Certificate Course on Advanced Ceramics and Composites

THEORY EXAM

	Date: 29/10/2022 Max. Marks: 80	Max. Time: 1 Hour Marks Obtained:
- Student	Name:	
I	Note: i) All questions are compulsory and c ii) Tick the correct option	arry equal marks Sign. Of Invigilator
. Whic	h of the following is not a characteristic of	advanced ceramics?
8	a) High melting point	
1	b) Low hardness	
(e) Brittle	
(d) Chemically inert	
. What	is the primary constituent of advanced cera	mics?
8	a) Silica	
1	o) Alumina	
(c) Titanium	
	d) Copper	

a) Lower cost

b) Higher toughness
c) Corrosion resistance
d) High-temperature stability
4. Which of the following is not a method of producing advanced ceramics?
a) Sintering
b) Injection molding
c) Sol-gel processing
d) Extrusion
5. Which of the following is an example of a ceramic composite?
a) Silicon carbide
b) Zirconia
c) Glass-ceramics
d) Fiberglass
6. What is the primary reinforcement material in ceramic matrix composites (CMCs)?
a) Metal
b) Polymer
c) Ceramic fibers
d) Glass
d) Glass 7. Which of the following properties is typically improved in ceramic composites compared to monolithic ceramics?
7. Which of the following properties is typically improved in ceramic composites compared to
7. Which of the following properties is typically improved in ceramic composites compared to monolithic ceramics?
7. Which of the following properties is typically improved in ceramic composites compared to monolithic ceramics? a) Brittleness
7. Which of the following properties is typically improved in ceramic composites compared to monolithic ceramics? a) Brittleness b) Thermal conductivity
7. Which of the following properties is typically improved in ceramic composites compared to monolithic ceramics? a) Brittleness b) Thermal conductivity c) Strength
7. Which of the following properties is typically improved in ceramic composites compared to monolithic ceramics? a) Brittleness b) Thermal conductivity c) Strength d) Transparency
7. Which of the following properties is typically improved in ceramic composites compared to monolithic ceramics? a) Brittleness b) Thermal conductivity c) Strength d) Transparency 8. What is the primary application of ceramic matrix composites (CMCs)?

c) Construction
d) Automobile
9. What is the major advantage of using ceramic composites in aerospace applications?
a) Low cost
b) High ductility
c) Low weight
d) High electrical conductivity
10. Which of the following is not a type of ceramic composite?
a) Metal matrix composites
b) Polymer matrix composites
c) Ceramic matrix composites
d) Carbon matrix composites
11. What is the main limitation of using ceramic composites in high-temperature applications?
a) Low strength
b) High cost
c) Susceptibility to corrosion
d) Oxidation at high temperatures
12. Which of the following is a common fabrication method for ceramic matrix composites?
a) Powder metallurgy
b) Chemical vapor deposition
c) Polymer infusion
d) Rapid prototyping
13. What is the primary function of the matrix material in a ceramic composite?
a) Provide strength
b) Enhance ductility
c) Bind reinforcement
d) Increase thermal conductivity

14. Which of the following is not a type of ceramic matrix composite (CMC)?
a) Carbon/carbon
b) Oxide/oxide
c) Silicon/silicon carbide
d) Polymer/polymer
15. What is the primary reinforcement material in metal matrix composites (MMCs)?
a) Ceramic fibers
b) Metal fibers
c) Polymer fibers
d) Glass fibers
16. Which of the following is not a property of metal matrix composites (MMCs)?
a) High strength
b) Low density
c) High thermal conductivity
d) Corrosion resistance
17. Which of the following is not a common application of metal matrix composites (MMCs)?
a) Automotive brake rotors
b) Bicycle frames
c) Aircraft fuselage
d) Food packaging
18. What is the primary disadvantage of using metal matrix composites (MMCs) in aerospace applications?
a) High cost
b) High weight
c) Low strength
d) Poor machinability

19. What is the primary reinforcement material in polymer matrix composites (PMCs)?
a) Metal fibers
b) Ceramic fibers
c) Polymer fibers
d) Glass fibers
20. Which of the following is not a characteristic of polymer matrix composites (PMCs)?
a) High strength-to-weight ratio
b) Low electrical conductivity
c) High thermal conductivity
d) Corrosion resistance
21. What is the primary advantage of using polymer matrix composites (PMCs) in automotive applications?
a) Low cost
b) High strength
c) Corrosion resistance
d) Low weight
22. Which of the following is a common polymer matrix material used in composites?
a) Polyethylene
b) Aluminum
c) Steel
d) Copper
23. What is the primary reinforcement material in carbon matrix composites?
a) Metal fibers
b) Ceramic fibers
c) Polymer fibers
d) Carbon fibers
24. Which of the following is a common application of carbon matrix composites?
a) Aircraft engines
b) Food packaging

c) Bicycle frames
d) Clothing
25. What is the main advantage of using carbon matrix composites in high-temperature applications?
a) Low cost
b) High strength
c) Low weight
d) High thermal conductivity
26. Which of the following is not a limitation of ceramic matrix composites (CMCs)?
a) Susceptibility to oxidation
b) High cost
c) Low strength
d) Difficulty in fabrication
27. Which of the following is not a limitation of metal matrix composites (MMCs)?
a) High cost
b) High weight
c) Low strength
d) Poor machinability
28. Which of the following is not a limitation of polymer matrix composites (PMCs)?
a) Low strength
b) Low weight
c) Susceptibility to moisture
d) High thermal conductivity
29. Which of the following is not a limitation of carbon matrix composites?
a) High cost
b) Susceptibility to oxidation
c) Low strength
d) Low thermal conductivity

30. Which of the following is not a common reinforcement material used in composites?
a) Carbon fibers
b) Glass fibers
c) Steel fibers
d) Copper fibers
31. In which of the following applications, ceramic composites are typically used?
a) Thermal insulation
b) Structural components
c) Electrical wiring
d) Food packaging
32. Which of the following is not a method of fabricating ceramic composites?
a) Chemical vapor deposition
b) Injection molding
c) Powder metallurgy
d) Sol-gel processing
33. Which of the following is not a property of ceramic composites?
a) High strength
b) Low density
c) High electrical conductivity
d) High temperature stability
34. Which of the following is a limitation of using ceramic composites in aerospace applications?
a) High cost
b) Low strength
c) Low temperature stability
d) High density
35. Which of the following is not a type of ceramic matrix composite (CMC)?
a) Carbon/carbon
b) Oxide/oxide

c) Polymer/polymer
d) Silicon carbide/silicon carbide
36. Which of the following is not a common application of metal matrix composites (MMCs)?
a) Automotive brake rotors
b) Bicycle frames
c) Aircraft wings
d) Food packaging
37. Which of the following is not a property of polymer matrix composites (PMCs)?
a) High strength-to-weight ratio
b) Low electrical conductivity
c) High thermal conductivity
d) Corrosion resistance
38. Which of the following is a common reinforcement material used in polymer matrix composites (PMCs)?
a) Metal fibers
b) Ceramic fibers
c) Polymer fibers
d) Glass fibers
39. What is the main advantage of using carbon matrix composites in high-temperature applications?
a) Low cost
b) High strength
c) Low weight
d) High thermal conductivity
40. Which of the following is not a limitation of carbon matrix composites?
a) High cost
b) Susceptibility to oxidation
c) Low strength
d) Low thermal conductivity

Answer Key

- 1. Answer: b) Low hardness
- 2. Answer: b) Alumina
- 3. Answer: d) High-temperature stability
- 4. Answer: b) Injection molding
- 5. Answer: a) Silicon carbide
- 6. Answer: c) Ceramic fibers
- 7. Answer: c) Strength
- 8. Answer: b) Aerospace
- 9. Answer: c) Low weight
- 10. Answer: d) Carbon matrix composites
- 11. Answer: d) Oxidation at high temperatures
- 12. Answer: b) Chemical vapor deposition
- 13. Answer: c) Bind reinforcement
- 14. Answer: d) Polymer/polymer
- 15. Answer: a) Ceramic fibers
- 16. Answer: c) High thermal conductivity
- 17. Answer: d) Food packaging
- 18. Answer: b) High weight
- 19. Answer: d) Glass fibers
- 20. Answer: c) High thermal conductivity
- 21. Answer: d) Low weight
- 22. Answer: a) Polyethylene
- 23. Answer: d) Carbon fibers
- 24. Answer: a) Aircraft engines
- 25. Answer: b) High strength
- 26. Answer: c) Low strength
- 27. Answer: c) Low strength
- 28. Answer: d) High thermal conductivity
- 29. Answer: c) Low strength
- 30. Answer: d) Copper fibers
- 31. Answer: b) Structural components
- 32. Answer: b) Injection molding
- 33. Answer: c) High electrical conductivity
- 34. Answer: a) High cost
- 35. Answer: c) Polymer/polymer
- 36. Answer: d) Food packaging
- 37. Answer: c) High thermal conductivity
- 38. Answer: d) Glass fibers
- 39. Answer: b) High strength
- 40. Answer: d) Low thermal conductivity

SCIENCE COLLEGE

Accredited with CGPA of 3.51 at 'A+' grade by NAAC, Bangalore
A "College with Potential for Excellence" identified by UGC New Delhi.
Institutional Member of APQN
Recognized Centre for Higher Learning and Research
Mentor College under 'PARAMARSH Scheme', UGC, New Delhi

Add-on Course

Course Exam	Name: "Certif	f <mark>icate Course</mark>	: Adva	nced Ceramics a	nd composites"
Name of Studer	nt:		I.,	INSTRUCTIONS FOR FILI 1. This sheet should not be 2. Use only blue/ black ball 3. Use of pencil is strictly p	folded or crushed. point pen to fill the circles.
Roll No.:	1:	Session: 202	3-24		ned completely and properly.
Test Date: 28/10/	2023 Max.	Marks: 80	H.	6. Do not use any stray ma 7. Do not use marker or wh	ite fluid to hide the mark.
3//	Obta	ined Marks:		WRONG METHODS	CORRECT METHOD
Invigilator Sig	10. 11			12	
ABCD	АВС	D AB	C D	ABCD	ABCD
10000	11 0000	21 🔾 🔾	000	31 0000	41 0000
2 0 0 0 0	12 000	22 ()	000	32 () () ()	42 0000
30000	13 0000	23 🔾 🤇	000	33 0000	43 0000
40000	14 0000	24 () ()	00	34 0000	44 0000
5 0000	15 000	25 🔾 🤇	00	35 0 0 0 0	45 000
60000	16 000	26 🔾 🤇	000	36 0000	46 0000
70000	17 0000	27 ()	000	37 000	47 0000
80000	18 000	28 () ()	000	38 0000	48 0000
90000	19 0000	29 🔾 🤇	000	39 0000	49 0000
10 0000	20 000	30 ()	000	40 0 0 0 0	50 0000

Nagpur University, Nagpur

Shri Shivaji Education Society Amravati's

Science College, Congress Nagar Nagpur Department of Physics 2023-2024

Add-on course Examination

Title: "Certificate Course: Advanced Ceramics and composites"

Course Coordinator: Dr. S. K. Sayyad

DATE: Total Marks: 100

STATEMENT OF MARKS

Sr. No.	Name of Students	Theory Marks (80M)	Practical Marks (20M)	Total (100M)	Grade
1	Achal Mohurle	60	20	80	A
2	Premlata Uparikar	64	20	84	A
3	Prerna Ambade	70	20	90	A+
4	Rahul Khangar	64	18	82	A
5	Riya Faldu	66	20	86	A+
6	Sakshi Nale	74	20	94	A+
7	Samiksha Bhusari	58	20	78	A
8	Vaishnavi Khade	58	20	78	А
9	Vedant Maske	54	20	74	B+
10	Yash Chaube	74	18	92	A+
11	Joy George Panakal	64	16	80	А
12	Mahevash Zamani Baig	72	18	90	A+
13	Nakul Avinash Deogade	78	16	94	A+
14	Nisha Yuvraj Shidurkar	62	20	82	А

15	Ranita Eknath Aglave	58	20	78	Α
16	Sakshi Omprakash Ukey	60	18	78	Α
17	Sakshit Janardhan Wahane	70	16	86	A+
18	Shraddha Vishwas Raut	74	20	94	A+

Dr. S.K.Sayyad

Course Coordinator

Department of Physics

Science college

Accredited with CGPA of 3.51 at 'A+' grade by RAAC, Sangalore A "College with Potential for Excellence" identified by UGC Rew Delhi. Institutional Member of APQS Recognized Contro for Higher Learning and Research Menter College under 'PARAMARSIE Scheme', UGC, New Delhi

Course Exar	n Name: Ce	rtific	Add-o	n Cour	se vanced Ceramic a	nd Composites
Name of Stude	nt:				INSTRUCTIONS FOR FILL 1. This sheet should not be 2. Use only bluef black ball; 3. Use of penol is shocky pri	ING THE SHEET folded or crushed point pen to fill the circles.
Roll No.:	03	8	Session: 2	0,23-24	Circles should be darkens Cutting and erasing on the	ed completely and property.
Test Date: 28/10	/2023	Ман. М	arks: 80		Do not use any stray mon Do not use marker or whit	o fluid to hide the mark.
Invigilator Si		Obtain	ed Marks:	70		O O O ●
20000	# Å B	C D	2+ O	8 C D	A B C D	4 0000
20000	1200	00	32 0	000	A 0000	40000
×6000	100	00	-25 ()	000	JI 0000	• 0000
10000	X14 00	00	.24 @	000	× 0000	#0000
X•0 • 00	as 💿 🔾	00	39 ()	•00	~×00 0 0	* 0000
~ 0000	**00	00	X20 O	000	×0000	• 0000
10000	100	00	Jar ()	000	× 00●0	#0000
~0000	×00	00	40	000	X** 00•0	• 0000
X.0000	100	00	150	000	20000	• 0000
-6000	~00	•0	39·O	000	# OOO	∞ 0000 l

Shri Shivaji Education Society, Amravati's SCIENCE COLLEGE

Congress Nagar, Nagpur-12 (M.S.), India

Accredited with COPA of 3.51 at 'A+' grade by NAAC, Bangalors A "College with Potential for Excellence" identified by UGC New Delhi.

Recognized Coatra for Higher Learning and Research.

Montor College under 'PARAMARSH Scheme', UGC, New Delhi

Achal 1	nt: 1 shurle				ivanced Ceramic a INSTRUCTIONS FOR FILE 1. This sheet should not be 2. Use only blue black had	ING THE SHEET folded or crushed.
Roll No.: 0 0 1 Session: 2023-24 Test Date: 28/10/2023 Max. Market Sc				Use only blus/ black ball point pen to fit the circles Use of pencil is strictly prohibited. Circles should be darkered completely and proper Curting and engine on the completely and proper.		
					Cutting and erasing on this sheet is not allowed. Do not use any stray marks on the sheet. Do not use marker or white fluid to hide the mark.	
Invigilator Si	gnature	Obtain	ed Marks:	60	WIRONG METHODS	ORRECT METHOD
4 B C D	.J. 0	B C D	X 2H O	B C D	A B C D	A B C I
J0000	1200	000	22-0	000	V20000	40000
v6000	X=00	000	,200	000	20000	• 0000
46000	400	000	110	000	#0 000	4 0000
J 6000	-10 0	000	X25 ()	000	×0000	* 0000
√•000 ®	J# 00	000	J8-0	000	X≈00 0 0	# 0000
20000	X17 OC	000	X27 O	000	0000 هر	40000
×6000	1800	00	_28 0	000	MO000	40000
00000	100	000	200	000	»·○•00	• 0000
w6000	30 00	000	X 30 O	000	Y* 0000	# 0000

SCIENCE COLLEGE, CONGRESS NAGAR, NAGPUR

Accredited with CGPA of 3.51 at 'A+' Grade A College with Potential for Excellence

CERTIFICATE

is awarded with certificate on successful completion of the

course entitled, Certificate course in "Advanced Ceramic & Composites".

Session 2023-24 under Add-an course conducted for 38 hours from 01/08/2023 to 07/10/2023 by Department of Physics, SSESA's, Science College, congress Nagar, Nagpur 440012.

He/She has passed the Examination with '...' Grade.

Dr. Mrs. Shahin Sayyed

Coordinator, Department of Physics

Prof. M. P. Dhore

Principal, Science College, Naor

SCIENCE COLLEGE, CONGRESS NAGAR,

NAGPUR

Accredited with CGPA of 3-51 at "Ar" Grade A College with Potential for Excellence

CERTIFICATE

Mr,Ku. Prenna Ambade is awarded with certificate on successful completion of the course entitled, Certificate course in Advanced Ceramic and Composites. Session 2023-24 under Add-on course conducted for 30 hours from 0 \(\tilde{108}\)2023 to 07/10/2023 by Department of Physics, SSESA's, Science College, congress Nagar, Nagpur 440012.

He/She has passed the Examination with 'A+' Grade.

Dr. Shahin K. Sayyad Coordinator, Department of

Prof. M. P. Dhore Principal, Science Collect Morrow

SCIENCE COLLEGE, CONGRESS NAGAR, Shri Shivaji Education Society Amravati's

NAGPUR

Accredited with CGPA of 3.51 at "Av" Grade A College with Potential for Excellence

Mr.Ku. Achal Mohurio is awarded with certificate on successful completion of the course entitled, Certificate course in Advanced Ceramic and Composites. Session 2023-24 under Add-on course conducted for 30 hours from 0 1/08/2023 to 07/10/2023 by Department of Physics, SSES Xs, Science College, congress Nagar, Nagpur 440012.

He/She has passed the Examination with 'A' Grade.

Dr. Shahin K. Sayyad Coordinator, Department of

Moreon

Prof. M. P. Dhore Principal, Science Collect

