NKT/KS/17/5094

Bachelor of Science (B.Sc.) Semester–II (C.B.S.) Examination STATISTICS (Probability Distributions)

Compulsory Paper—1

Time: Three Hours] [Maximum Marks: 50

N.B. :— **ALL** questions are compulsory and carry equal marks.

- 1. (A) Obtain the mode of a binomial distribution in the following two cases:
 - (i) (n + 1) p is an integer (ii) (n + 1)p is not an integer.

The mean of binomial distribution is 4 and its variance is $\frac{4}{3}$. Find its mode.

OR

- (E) Obtain the first three raw moments about origin for a Poisson distribution. Hence obtain μ_2 , μ_3 and β_1 . Comment on the skewness of this distribution.
- 2. (A) Derive the pmf of Geometric distribution. Obtain its moment generating function. Hence find its mean and variance.

An expert sharpshooter misses a target 5% of the time. Find the probability that she will miss the target for the first time on the sixth shot.

OF

- (E) Find the mgf of negative binomial distribution. Hence find its mean and variance.
- (F) An IRS auditor randomly selects 5 income tax returns from among 20 submitted returns. If it is known that, there are 9 returns with illegitimate deductions out of 20 returns, then find the probability that there is at the most one return with illegitimate deductions in the selected 5 returns.
- (G) Derive the pmf of negative binomial distribution.
- (H) Find the mean of hypergeometric distribution.

 $2\frac{1}{2} \times 4 = 10$

3. (A) Obtain the mean, variance, median and mode of Normal distribution.

10

OR

- (E) Find the moment generating function of normal distribution. Show that a linear combination of independent normal variates is also a normal variate. If $X_1 \& X_2$ are independent normal variables then state the distribution of $X_1 + X_2$ and $X_1 X_2$.
- (F) State one example of a random variable which follows discrete uniform distribution.

If the r.v. X takes values 1, 2, 20 with the p.m.f.

$$p(x) = p[x = x] = \frac{1}{20} \forall x = 1,2,....20.$$

Find the mean and variance. Does this distribution possess a mode? Comment. 5+5

NXO—20199 1 (Contd.)

4.	(A) Write the pdf of exponential distribution. Obtain its mfg. Hence find	the first three raw
	moments about origin. Also obtain μ_2 , μ_3 and β_1 . Comment on the skewness	of this distribution.
	State and prove the lack of memory property of this distribution.	10

OR

- (E) For a two parameter Gamma distribution obtain the mgf. Hence obtain its mean and variance.
- (F) State the pdf of Beta distribution of second type (kind). Obtain the expression for the t^h raw moment about origin. Hence find its mean and variance.

 5+5
- 5. Solve any 10 questions from the following:
 - (A) Modes of a Poisson distribution are at x = 2 and x = 3. Find p[x = 0].
 - (B) State the pgf of binomial distribution with parameters n = 6 and $p = \frac{1}{3}$.
 - (C) If for a Poisson distribution with parameter λ , P[X = 1] = P[X = 2], then state its mean, mode and standard deviation.
 - (D) Give one real life example of a r.v. where geometric distribution is applicable.
 - (E) State the parameters of hypergeometric distribution.
 - (F) A normal distribution is completely specified by its _____ and ____. (Fill in the blanks and rewrite the sentence)
 - (G) Write two chief characteristics of normal distribution.
 - (H) What is the other name of continuous uniform distribution? Why is it called so?
 - (I) Write the pdf of gamma distribution with one parameter.
 - (J) Let X follow exponential distribution with pdf given by

$$f(x) = 3e^{-3x}$$
, $0 < x < 0$
= 0 , otherwise

State its mean and variance.

- (K) State the additive property of one parameter gamma distribution.
- (L) State two discrete distributions with mean less than variance.

 $1 \times 10 = 10$

