B.A./B.Sc. (Statistics) Semester-III (C.B.S) Examination

STATISTICS

(Statistical Methods)

Compulsory Paper—1

Time : Three Hours]

.

[Maximum Marks : 50

Note :— All questions are compulsory and carry equal marks.

1. (A) Define joint p.m.f. of two random variables X and Y. Also define their marginal p.m.f.s. When are these two random variables said to be independent ? Let the joint p.m.f. of X and Y be defined by

$$f(x, y) = \frac{x + y}{21}, x = 1, 2, 3; y = 1, 2$$

Find marginal p.m.f.s of X and Y. Also find E(X) and V(X). Check whether the random variables X and Y are independent. 10

OR

(E) Let X_1 and X_2 have the joint p.d.f.

$$f(x_1, x_2) = \begin{cases} 2, & 0 < x_1 < x_2 < 1 \\ 0, & \text{elsewhere} \end{cases}$$

Find :

- (i) The marginal densities of X_1 and X_2 .
- (ii) The conditional p.d.f. of X_1 given $X_2 = x_2$.
- (iii) The conditional mean and conditional variance of X_1 given $X_2 = x_2$.

(iv)
$$P\left(0 < X_1 < \frac{1}{2} / X_2 = \frac{3}{4}\right)$$

(v) $P\left(0 < X_1 < \frac{1}{2}\right)$. 10

(A) State the p.d.f. of Bivariate normal distribution of (X, Y). Find its m.g.f. and hence find E(X) and E(Y). Show that the correlation coefficient between (X, Y) is ρ.

OR

- (E) Derive the probability function of trinomial distribution. Also find its m.g.f.
- (F) State the joint p.d.f. of Bivariate normal distribution. Find the marginal density function of X.

5+5

- 3. (A) Let X_1 and X_2 be independent r.vs following normal distribution with parameters (μ_1, σ_1^2) and (μ_2, σ_2^2) respectively. Find the probability distribution of $a_1X_1 + a_2X_2$.
 - (B) If X follows Poisson distribution with parameter 4. Find the p.m.f. of $Y = \sqrt{X}$.
 - (C) If X is a standard normal variable, find the p.d.f. of $Y = X^{1/3}$.
 - (D) If X_1 and X_2 are independent random variables having exponential distributions with the same parameters θ , find the probability density of the random variable $X_1 + X_2$. $2\frac{1}{2} \times 4 = 10$

OR

POY-28462

www.rtmnuonline.com

- www.rtmnuonline.com (E) Let X_1 and X_2 be two independent random variables having identical gamma distributions with parameters (α , β).
 - Find the joint probability density of the random variables $Y_1 = \frac{X_1}{X_1 + X_2}$ and (i)

 $Y_2 = X_1 + X_2.$

(ii) Find and identify the marginal density of Y_1 .

(F) If the joint probability distribution of X_1 and X_2 is given by :

$$\mathbf{p}(\mathbf{x}_1, \mathbf{x}_2) = \frac{\mathbf{x}_1 \mathbf{x}_2}{36}, \ \mathbf{x}_1 = 1, 2, 3$$
$$\mathbf{x}_2 = 1, 2, 3$$

Find :

- (i)
- The joint distribution of $Y_1 = X_1 + X_2$ and $Y_2 = X_1 X_2$. The marginal probability distribution of Y_1 . 5 + 5(ii)

(A) Define F-statistic. Derive its p.d.f. Find rth raw moment about origin of F-distribution and hence 4. find its mean and variance. 10

OR

- (E) Define Fisher's t State p.d.f. of t-distribution. Derive p.d.f. of f.
- (F) Define Chi square statistic. State its p.d.f. and find mode of Chi square distribution. 5 + 5
- 5. Solve any **TEN** from the following :
 - (A) Define bivariate m.g.f.
 - (B) Define correlation coefficient and state its limits.
 - (C) Show that cov (aX, bY) = ab cov (X, Y).
 - (D) If (X_i, Y_i) are bivariate normal with parameters $(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$ for i = 1, 2,n. State the probability distribution of $(\overline{X}, \overline{Y})$.
 - (E) If r.v. (X, Y) follows bivariate normal distribution with parameters (μ_1 , μ_2 , σ_1^2 , σ_2^2 , ρ), state the conditional p.d.f. of Y given X = x.
 - (F) State the p.d.f. of multinomial distribution.
 - (G) Define a "random sample".
 - (H) Define a 'statistic'.
 - Define sampling distribution. (\mathbf{I})
 - **(J)** State m.g.f. of Chi square distribution.
 - (K) If X ~ F(n₁, n₂), state the probability distribution of $\frac{1}{X}$.
 - (L) Comment : F-distribution is highly positively skewed distribution.

835

www.rtmr²uonline.com

 $1 \times 10 = 10$