Bachelor of Science (B.Sc.) Semester-IV (C.B.S.) Examination

STATISTICS (STATISTICAL INFERENCE)

Paper—I

Time : Three Hours]

[Maximum Marks : 50

N.B. :--ALL questions are compulsory and carry equal marks.

- 1. (A) Define MVUE. State CRLB. If x_1, x_2, \dots, x_n is a random sample from a normal population with mean μ and variance σ^2 , then show that sample mean \overline{x} is MVUE for population mean μ .
 - (B) What are the different types of errors involved in testing of hypothesis ? Let X be random variable, whose values and the densities under H_0 and H_1 are as follows. Determine the best critical region of size 0.1.

Х	:	1	2	3	4	050	6	7	
$f(x, H_0)$:	0.01	0.02	0.03	0.05	0.05	0.07	0.77	
$f(x, H_1)$:	0.03	0.09	0.10	0.10	0.20	0.18	0.30	5+5
OR									

- (E) Define :
 - (i) Statistical hypothesis
 - (ii) Null hypothesis
 - (iii) Critical region
 - (iv) Level of significance
 - (v) Critical value.
- (F) Let p be the probability that a coin will show head in a single toss. In order to test H_0 : $p = \frac{1}{2}$ against H_1 : $p = \frac{3}{4}$ the coin is tossed 4 times and H_0 is rejected, if more than 3 heads occur. Find α , β and power of test. 5+5
- 2. (A) Explain (i) Paired t-test (ii) t-test for testing the significance of the sample correlation coefficient in sampling from bivariate normal population.
 - (B) Explain F-test for testing the equality of population variances. Also explain the construction of 100 (1α) % confidence interval for the ratio of population variances when population means are known. 5+5

OR

- (E) Explain t-test for a single mean, stating the assumptions. Also construct $100(1 \alpha)\%$ confidence interval for the population mean.
- (F) Explain t-test for testing the equality of population means of two populations. 5+5
- 3. (A) Explain Chi-square test for testing the specified value of population variance. Also develop $100(1 \alpha)\%$ confidence interval for population variance.
 - (B) Explain the test for testing independence of two attributes in an r×s contingency table.

5+5

OR

(E) Derive the formula for Chi-square test statistic in a 2×2 contingency table. Explain Yates' correction and obtain the modified formula after application for Yates' correction. 10

1

835

rtmnuonline.com

(A) Explain the large sample test for testing the equality of two population proportions. Also 4. develop $100(1 - \alpha)\%$ confidence interval for the difference between two population proportions.

10

10

OR

- (E) Explain large sample test for testing :
 - Specified value of population mean (i)
 - (ii) Equality of two population means.
- Solve any *ten* of the following : 5.
 - (A) When will mean squared error of a statistic be same as its standard error ?
 - (B) Let C be a critical region for which probability of type I and II error are α and β . Let C₁ be a proper subset of C with α_1 and β_1 being the corresponding errors. Compare α and α_1 and β and β_1 .
 - and p and p₁.
 (C) If t is an unbiased estimator of parameter θ then show that t is not an unbiased estimator of θ².
 (D) State the assumptions of small sample tests.
 (E) If m and n are sample sizes of two random samples from univariate normal populations and a statistic is formed by taking the ratio of the state of the state.

 - a statistic is formed by taking the ratio of these two sample variances. Then state the probability distribution of the statistic.
 - (F) Define pooled sample variance of two independent samples drawn from two normal populations.
 - (G) Fill in the blank :

If 'P' is the constant probability of success in independent Bernoulli trials then the standard error of sample proportion is $\underline{\qquad}$.

- (H) If a coin tossed 100 times give 20 'heads', then state the value of test statistic used to test whether the coin is unbiased
- State central limit theorem. (I)
- (J) State the test statistic used for testing goodness of fit.
- (K) If x_1, x_2, \dots, x_n are iid normal variates with mean μ and known variance σ n identify distributions of $\sum_{i=1}^{n} \left(\frac{x_i - \mu}{\sigma}\right)^2$ and $\sum_{i=1}^{n} \left(\frac{x_i - \overline{x}}{\sigma}\right)^2$.
- (L) In testing goodness of fit, what is the minimum value of the Chi-square statistic ? When will it be attained ? 1×10

23°